
Examples regarding the applied methodology 
 

 

Example (SMAA): Let us suppose that we need to rank order alternatives 𝑎, 𝑏, and 𝑐, evaluated based on criteria 𝑔1, 

𝑔2, and 𝑔3, as shown in Table 1  

 

Table 1 Evaluations of the alternatives using three criteria 

Alternative/Criterion 𝒈𝟏(⋅) 𝒈𝟐(⋅) 𝒈𝟑(⋅) 

𝒂𝟏 10 30 20 

𝒂𝟐 20 10 30 

𝒂𝟑 30 20 10 

 

 

Table 2 Weight vectors 

 𝒘𝟏
(⋅)

 𝒘𝟐
(⋅)

 𝒘𝟑
(⋅)

 

𝒘𝟏 0.2488 0.4210 0.3302 

𝒘𝟐 0.2941 0.4646 0.2413 

𝒘𝟑 0.2496 0.4577 0.2926 

𝒘𝟒 0.4153 0.2325 0.3522 

𝒘𝟓 0.4637 0.3022 0.2342 

𝒘𝟔 0.3095 0.2764 0.4141 

 

 

Table 3 Comprehensive value of each alternative with respect to the six weight vectors 

 𝑼(⋅, 𝒘𝟏) 𝑼(⋅, 𝒘𝟐) 𝑼(⋅, 𝒘𝟑) 𝑼(⋅, 𝒘𝟒) 𝑼(⋅, 𝒘𝟓) 𝑼(⋅, 𝒘𝟔) 

𝒂𝟏 21.7214 21.7047 22.0813 18.1712 18.3851 19.6685 

𝒂𝟐 19.0929 17.7672 18.3491 21.1972 19.3200 21.3768 

𝒂𝟑 19.1857 20.5281 19.5697 20.6317 22.2948 18.9547 

 

 

As can be seen, the rankings obtained by considering the six weight vectors are different. Indeed, w.r.t. 𝑤1, 𝑤2, and 𝑤3, 

𝑎1 ≻ 𝑎3 ≻ 𝑎2 (where 𝑎1 ≻ 𝑎3 means that 𝑎1 is strictly preferred to 𝑎3); w.r.t. 𝑤4, 𝑎2 ≻ 𝑎3 ≻ 𝑎1, w.r.t. 𝑤5, 𝑎3 ≻ 𝑎2 ≻

𝑎1, while w.r.t. 𝑤6, 𝑎2 ≻ 𝑎1 ≻ 𝑎3. In this way, we show that the final ranking is strictly dependent on the choice of the 

weight vectors.  

 

 

Now, let us show how the indices of SMAA can be computed.  

Let us suppose that the whole set of weights 𝑊 is composed only of 𝑤1 , … , 𝑤6. The rank acceptability indices for the 

three alternatives related to the three positions are shown in Table 4. As can be seen, 𝑏(𝑎1, 2) = 16.67% since in one 

out of the six cases 𝑎1 reached the second position (for the weight vector 𝑤6), while 𝑏(𝑎3, 2) = 66.67% because 𝑎3 

reached the second position in four out of the six cases (for the weights 𝑤1, 𝑤2, 𝑤3, 𝑤4).  

 

Table 4 Rank acceptability indices of the three considered alternatives expressed in percentage terms 

 𝒃(⋅, 𝟏) 𝒃(⋅, 𝟐) 𝒃(⋅, 𝟑) 

𝒂𝟏 50.00 16.67 33.33 

𝒂𝟐 33.33 16.67 50.00 

𝒂𝟑 16.67 66.67 16.67 

 

Based on the rank acceptability indices, we can compute the barycenter of the weights giving to each alternative the 

three different positions shown in table 5. 

 

Table 5 Barycenter of the weights giving to three alternatives one of the positions considered 

 𝒘𝟏
𝒄 (𝒂𝟏,⋅) 𝒘𝟐

𝒄 (𝒂𝟏,⋅) 𝒘𝟑
𝒄 (𝒂𝟏,⋅)  

 𝒘𝒄(𝒂𝟏, 𝟏) 0.2641 0.4477 0.2880  



𝒘𝒄(𝒂𝟏, 𝟐) 0.3095 0.2764 0.4141  

𝒘𝒄(𝒂𝟏, 𝟑) 0.4395 0.2673 0.2932  

     

 𝒘𝟏
𝒄 (𝒂𝟐,⋅) 𝒘𝟐

𝒄 (𝒂𝟐,⋅) 𝒘𝟑
𝒄 (𝒂𝟐,⋅)  

 𝒘𝒄(𝒂𝟐, 𝟏) 0.3624 0.2544 0.3837  

𝒘𝒄(𝒂𝟐, 𝟐) 0.4637 0.3022 0.2342  

𝒘𝒄(𝒂𝟐, 𝟑) 0.2641 0.4477 0.2880  

     

 𝒘𝟏
𝒄 (𝒂𝟑,⋅) 𝒘𝟐

𝒄 (𝒂𝟑,⋅) 𝒘𝟑
𝒄 (𝒂𝟑,⋅)  

 𝒘𝒄(𝒂𝟑, 𝟏) 0.4637 0.3022 0.2342  

𝒘𝒄(𝒂𝟑, 𝟐) 0.3019 0.3939 0.3040  

𝒘𝒄(𝒂𝟑, 𝟑) 0.3095 0.2764 0.4141  

 

For example, to compute the weight vector 𝑤𝑐(𝑎2, 3), that is the average preferences giving to 𝑎2 third position, we can 

observe from Table 3 that 𝑎2 reaches third position in correspondence with the weight vectors 𝑤1 , 𝑤2, 𝑤3; 

consequently, 𝑊2
3 = {𝑤1, 𝑤2, 𝑤3}, and therefore 𝑤𝑐(𝑎2, 3) is the vector obtained averaging component by component 

the weight vectors in 𝑊2
3. Finally, in Table 6, we show the pairwise winning indices. 

 

Table 6 Pairwise winning indices expressed in percentage terms 

𝒑(⋅,⋅) 𝒂𝟏 𝒂𝟐 𝒂𝟑 

𝒂𝟏 0 66.67 66.67 

𝒂𝟐 33.33 0 16.67 

𝒂𝟑 33.33 83.33 0 

 

 

As can be seen, 𝑎1 is preferred to 𝑎2 and 𝑎3 with the same frequency (66.67%) since it is preferred to both alternatives 

in correspondence with four out of the six weight vectors considered. In particular, 𝑎1 is preferred to 𝑎2 and 𝑎3 for the 

weight vectors 𝑤1, 𝑤2,  and 𝑤3. In addition to these three weight vectors, 𝑎1 is preferred to 𝑎2 in correspondence with 

𝑤4, while 𝑎1 is preferred to 𝑎3 in correspondence with 𝑤6. Analogously, 𝑎2 is preferred to 𝑎3 with a frequency of 

16.67%, based on correspondence with only one of the six weight vectors.  

As previously shown, the ranking of the alternatives will depend on the choice of the weights assigned to the criteria 

considered. Therefore, the application of the SMAA methodology permits the drawing of robust conclusions in terms of 

the frequency of attaining a certain ranking position, as well as in terms of the frequency of preference between 

alternatives. 

 

 

 

 

Example (SMAA-S: computation of the barycenter): Let us consider four criteria supposing that their ranking is as 

follows: 

 

  𝑔2 ≿ 𝑔4 ≿ 𝑔1 ≿ 𝑔3  

 

The corresponding criteria weights have to satisfy the inequalities chain:  

 

𝑤2 ≥ 𝑤4 ≥ 𝑤1 ≥ 𝑤3. 

 

The polyedron defined by these inequalities has the vertices: 

 

𝑤(1) = (0,1,0,0),  𝑤(2) = (0,
1
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3
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Consequently, the barycenter of the polyedron is 𝐵𝑊 = (
7

48
,

25

48
,

3

48
,

13

48
). 

 



Example (SMAA-S):  Let us suppose that the variable V to be explained takes the values V(a1)=35, V(a2)=50, and 

V(a3)=20, so that 𝑅𝑎𝑛𝑘𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘  has a2, a1, and a3 in the first, second, and third ranking position, respectively, that is:  

𝑅𝑎𝑛𝑘𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 = {𝑎3 ≻ 𝑎1 ≻ 𝑎3} 

 

There are then six possible rankings of importance for the criteria: 

𝑃(1) = {𝑔1 ≿ 𝑔2 ≿ 𝑔3}, 𝑃(2) = {𝑔1 ≿ 𝑔3 ≿ 𝑔2}, 

 𝑃(3) = {𝑔2 ≿ 𝑔1 ≿ 𝑔3}, 𝑃(4) = {𝑔2 ≿ 𝑔3 ≿ 𝑔1}, 

 𝑃(5) = {𝑔3 ≿ 𝑔1 ≿ 𝑔2}, 𝑃(6) = {𝑔3 ≿ 𝑔2 ≿ 𝑔1}. 

 

To the ranking of importance 𝑃(1) there is a corresponding set of weight vectors W
(1)

 satisfying the following set of 

constraints: 

 

𝑤1 ≥ 𝑤2 ≥ 𝑤3

𝑤1 + 𝑤2 + 𝑤3 = 1
𝑤1 ≥ 0, 𝑤2 ≥ 0, 𝑤3 ≥ 0

} 

 

In the set of weight vectors W
(1)

 one can find the vector w
1
=[1,0,0], as well as w

2
=[0.5,0.5,0], and also w

3
=[1/3,1/3,1/3]. 

In W
(1)

 there is an infinity of other weight vectors, such as w
4
=[0.4,0.35,0.25], w

5
=[0.5,0.3,0.2], and so on. The 

barycenter of W
(1)

, which can be taken as the weight vector representative of all the weight vectors in W
(1) 

, is as follows:  

 𝐵𝑊(1) = [
1 + 0.5 +

1
3

3
,
0.5 +

1
3

3
,

1
3
3

] = [0.611, 0.278,0.111]. 

If we compute the comprehensive value of alternatives a1, a2, and a3 in terms of the weighted sum with respect to 

weight vector BW
(1)

, we obtain the following:  

 

U(a1,BW
(1)

)=16.667, U(a2,BW
(1)

)=18.333, U(a3,BW
(1)

)=25 

corresponding to the ranking of alternatives 

𝑅𝑎𝑛𝑘(1) = {𝑎3 ≻ 𝑎2 ≻ 𝑎1}. 

 

Therefore, we obtain a Kendall tau equal to 𝜏(1) = 1/3. Analogously, we obtain: 

𝜏(2) =
1

3
, 𝜏(3) =

1

3
, 𝜏(4) =

1

3
, 𝜏(5) = −1, 𝜏(6) = −1. 

 

Therefore, we derive that the maximal value of the Kendall tau is obtained by 𝑅𝑎𝑛𝑘(1), 𝑅𝑎𝑛𝑘(2), 𝑅𝑎𝑛𝑘(3), and 𝑅𝑎𝑛𝑘(4) 

for which in two out of four cases the most important factor, i.e., the one with the greatest weight, is 𝑔1, and in two out 

of four cases the most important factor is 𝑔2, which suggests that 𝑔1 and 𝑔2 are the most important factors in explaining 

the variable V. 

 


