
Dealing with Interaction Between Bipolar Multiple

Criteria Preferences in PROMETHEE Methods
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Abstract: In this paper we extend the PROMETHEE methods to the case of interacting criteria

on a bipolar scale, introducing the bipolar PROMETHEE method based on the bipolar Choquet

integral. In order to elicit parameters compatible with preference information provided by the

Decision Maker (DM), we propose to apply the Robust Ordinal Regression (ROR). ROR takes

into account simultaneously all the sets of parameters compatible with the preference information

provided by the DM considering a necessary and a possible preference relation.

Keywords: PROMETHEE methods, Interaction between criteria, Bipolar Choquet integral.

1 Introduction

In a decision making problem a set of alternatives A = {a, b, c, . . .} is evaluated on a set G = {g1, . . . , gn}

of evaluation criteria in order to deal with a ranking, choice, or sorting problem (for a survey on Multiple

Criteria Decision Analysis (MCDA) see Figueira et al. 2005b). Ranking problems consist into rank ordering

all the alternatives from the best to the worst; choice problems consist into selecting a subset of alternatives

of A considered good or removing a set of alternatives considered bad while sorting problems consist into

assigning each alternative to some predefined and preferentially ordered classes.

To aggregate the evaluations of each alternative on the considered criteria, three methodologies are well

known in literature:

• assigning to each alternative a real number U(a) representing the degree of desirability of a on the

problem at hand as in the Multiple Attribute Utility Theory (MAUT) (see Keeney and Raiffa 1976);
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†Instituto Superior Técnico, Universidade de Lisboa, Portugal, e-mail: figueira@tecnico.ulisboa.pt
‡Portsmouth Business School, Operations & Systems Management University of Portsmouth, Portsmouth PO1 3DE, United

Kingdom

1



• building some outranking preference relation on A as in the case of outranking methods (Brans and

Mareschal 2005; Brans and Vincke 1985; Figueira et al. 2005a),

• using a set of ”‘if..., then”’ decision rules from the Decision Maker (DM) preference information through

Dominance-based Rough Set Approach (DRSA, see Greco et al. 2001, 2005)

Considering for each criterion gj the set Xj of all possible evaluations of alternatives in A on criterion gj ,

in the first model a value function U :

n
∏

j=1

Xj → R is defined so that for each couple of alternatives a, b ∈ A,

a is at least as good as b if and only if U(g1(a), . . . , gn(a)) ≥ U(g1(b), . . . , gn(b)). In its simplest form,

this function is additive, i.e., U(g1(a), . . . , gn(a)) =

n
∑

j=1

uj(gj(a)), where uj : Xj → R are marginal value

functions assigning a value to a representing its evaluation on criterion gj .

In the third model the aim is to express the relationships between some preferences provided by the DM on

alternatives of A and their evaluations on the considered criteria using decision rules such as:

• If the price of a car is lower than 10,000 euros and it consumes at most 1 l of fuel per 20 km, then this

car is comprehensively excellent.

The second model will be thoroughly discussed in section 2.

In many decision making problems, alternatives are evaluated with respect to a set of criteria being

not mutually preferentially independent (see Wakker 1989). In fact, in most cases, the criteria present a

certain form of positive (synergy) or negative (redundancy) interaction. For example, if one likes sport cars,

maximum speed and acceleration are very important criteria. However, since in general speedy cars have

also a good acceleration, giving a high weight to both criteria can over evaluate some cars. Thus, it seems

reasonable to give maximum speed and acceleration considered together a weight smaller than the sum of

the two weights assigned to these criteria when considered separately. In this case we have a redundancy

between the criteria of maximum speed and acceleration. On the contrary, we have a synergy effect between

maximum speed and price because, in general, speedy cars are also expensive and, therefore, a car which

is good on both criteria is very appreciated. In this case, it seems reasonable to give maximum speed

and price considered together a weight greater than the sum of the two weights assigned to these criteria

when considered separately. In these cases, the aggregation of the evaluations is done by using non-additive

integrals the most well known of which are the Choquet integral (Choquet 1953) and the Sugeno integral

(Sugeno 1974) (for a comprehensive survey on the use of non-additive integrals in MCDA see Grabisch 1996;

Grabisch and Labreuche 2005c, 2010).

In many cases, we have also to take into account that the importance of criteria may also depend on the

criteria which are opposed to them. For example, a bad evaluation on aesthetics reduces the importance of
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maximum speed. Thus, the weight of maximum speed should be reduced when there is a negative evaluation

on aesthetics. In this case, we have an antagonistic effect between maximum speed and aesthetics.

Those types of interactions between criteria have been already taken into consideration in the ELECTRE

methods (Figueira et al., 2009a). In this paper, we deal with the same problem using the bipolar Choquet

integral (Grabisch and Labreuche, 2005a,b) applied to the PROMETHEE I and II methods (Brans and

Mareschal, 2005; Brans and Vincke, 1985).

This article extends the short paper published by the authors in Corrente et al. (2012) with respect to

which we added the description of the bipolar PROMETHEE I method, the proofs of all theorems presented

in Corrente et al. (2012) and a didactic example in which we apply the bipolar PROMETHEE methods and

the Robust Ordinal Regression (ROR) (Greco et al., 2008, 2010) being a family of MCDA methods taking

into account simultaneously all the sets of preference parameters compatible with the preference information

provided by the Decision Maker (DM) using a necessary and a possible preference relation.

The paper is organized as follows. In the next section we recall the basic concepts of the classical PROMETHEE

methods; in section 3 we introduce the bipolar PROMETHEE methods; the elicitation of preference infor-

mation permitting to fix the value of the preference parameters of the model (essentially the bicapacities of

the bipolar Choquet integral) is presented in section 4; in the fifth section we apply the ROR to the bipolar

PROMETHEE methods; a didactic example is presented in section 6, while the last section provides some

conclusions and lines for future research.

2 The classical PROMETHEE methods

PROMETHEE (Brans and Mareschal, 2005; Brans and Vincke, 1985) is a well-known family of MCDA

methods, among which the most well known are PROMETHEE I and II, that aggregate preference infor-

mation of a DM through an outranking relation. Considering for each criterion gj a weight wj (representing

the importance of criterion gj within the family of criteria G), an indifference threshold qj (being the largest

difference dj(a, b) = gj(a) − gj(b) compatible with the indifference between alternatives a and b), and a

preference threshold pj (being the minimum difference dj(a, b) compatible with the preference of a over b),

PROMETHEE methods (from now on, when we shall speak of PROMETHEE methods, we shall refer to

PROMETHEE I and II) build a non decreasing function Pj(a, b) of dj(a, b), whose formulation (see Brans
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and Mareschal 2005 for other formulations) can be stated as follows

Pj(a, b) =























0 if dj(a, b) ≤ qj

dj(a,b)−qj
pj−qj

if qj < dj(a, b) < pj

1 if dj(a, b) ≥ pj

The greater the value of Pj(a, b), the greater the preference of a over b on criterion gj . For each ordered pair

of alternatives (a, b) ∈ A × A, PROMETHEE methods compute the value π(a, b) =
∑

j∈J

wjPj(a, b) where

J = {1, . . . , n} is the set of indices of criteria in G. π(a, b) represents how much alternative a is preferred

to alternative b taking into account the whole set of criteria and it can assume values between 0 and 1.

Obviously, the greater the value of π(a, b), the greater the preference of a over b.

In order to compare an alternative a with all the other alternatives of the set A, PROMETHEE methods

compute the negative and the positive flow of a

φ−(a) =
1

m− 1

∑

b∈A\{a}

π(b, a) and φ+(a) =
1

m− 1

∑

b∈A\{a}

π(a, b)

where m = |A|. These flows represent, on average, how much the alternatives of A \ {a} are preferred to

a and how much a is preferred to the alternatives of A \ {a}. For each alternative a ∈ A, PROMETHEE

II computes also the net flow φ(a) = φ+(a) − φ−(a). On the basis of the positive and the negative flows,

PROMETHEE I provides a partial ranking on A, building a preference (PI), an indifference (II) and an

incomparability (RI) relation. In particular:































































aPIb iff























Φ+(a) ≥ Φ+(b),

Φ−(a) ≤ Φ−(b),

Φ+(a) − Φ−(a) > Φ+(b) − Φ−(b)

aIIb iff







Φ+(a) = Φ+(b),

Φ−(a) = Φ−(b)

aRIb otherwise

On the basis instead of the net flows, the PROMETHEE II method provides a complete ranking on

A defining, in a natural way, a preference (PII) and an indifference (III) relation for which aPIIb iff

Φ(a) > Φ(b) while aIIIb iff Φ(a) = Φ(b).
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3 The bipolar PROMETHEE methods

In order to extend the classical PROMETHEE methods to the bipolar framework, we define for each criterion

gj , j ∈ J , the bipolar preference function PB
j : A×A → [−1, 1], in the following way:

PB
j (a, b) = Pj(a, b) − Pj(b, a) =











Pj(a, b) if Pj(a, b) > 0

−Pj(b, a) if Pj(a, b) = 0

(1)

It is straightforward proving that PB
j (a, b) = −PB

j (b, a) for all j ∈ J and for all pairs (a, b) ∈ A×A.

In this section we propose to aggregate the bipolar vector PB(a, b) =
[

PB
1 (a, b), . . . , PB

n (a, b)
]

through

the bipolar Choquet integral.

The bipolar Choquet integral is based on a bicapacity (Grabisch and Labreuche, 2005a,b), being a function

µ̂ : P (J ) → [−1, 1], where P (J ) = {(C,D) : C,D ⊆ J and C ∩D = ∅}, such that

• µ̂(∅,J ) = −1, µ̂(J , ∅) = 1, µ̂(∅, ∅) = 0 (boundary conditions),

• for all (C,D), (E,F ) ∈ P (J ), if C ⊆ E and D ⊇ F , then µ̂(C,D) ≤ µ̂(E,F ) (monotonicity condition).

According to Greco and Figueira (2003) and Greco et al. (2002), we consider the following expression for a

bicapacity µ̂:

µ̂(C,D) = µ+(C,D) − µ−(C,D), for all (C,D) ∈ P (J ) (2)

where µ+, µ− : P (J ) → [0, 1] such that:

µ+(J , ∅) = 1, µ+(∅, B) = 0, ∀B ⊆ J , (3)

µ−(∅,J ) = 1, µ−(B, ∅) = 0, ∀B ⊆ J , (4)

µ+(C,D) ≤ µ+(C ∪ {j} , D), ∀(C ∪ {j} , D) ∈ P (J ), ∀j ∈ J ,

µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀(C,D ∪ {j}) ∈ P (J ), ∀j ∈ J







(5)

µ−(C,D) ≤ µ−(C,D ∪ {j}), ∀(C,D ∪ {j}) ∈ P (J ), ∀j ∈ J ,

µ−(C,D) ≥ µ−(C ∪ {j} , D), ∀(C ∪ {j} , D) ∈ P (J ), ∀j ∈ J







(6)

Let us observe that (5) are equivalent to the constraint
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µ+(C,D) ≤ µ+(E,F ), for all (C,D), (E,F ) ∈ P (J ) such that C ⊆ E and D ⊇ F,

while (6) are equivalent to the constraint

µ−(C,D) ≤ µ−(E,F ), for all (C,D), (E,F ) ∈ P (J ) such that C ⊇ E and D ⊆ F.

The interpretation of the functions µ+ and µ− is the following. Given the pair (a, b) ∈ A × A, let us

consider (C,D) ∈ P (J ) where C is the set of criteria expressing a preference of a over b and D the set of

criteria expressing a preference of b over a. In this situation, µ+(C,D) represents the importance of criteria

from C when criteria from D are opposing them, and µ−(C,D) represents the importance of criteria from

D opposing C. Consequently, µ̂(C,D) represents the balance of the importance of C supporting a and D

supporting b.

Given (a, b) ∈ A × A, the bipolar Choquet integral of PB(a, b) with respect to the bicapacity µ̂ can be

written as follows

ChB(PB(a, b), µ̂) =

∫ 1

0
µ̂({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

while the bipolar comprehensive positive preference of a over b and the comprehensive negative preference

of a over b with respect to the bicapacity µ̂ are respectively:

ChB+(PB(a, b), µ̂) =

∫ 1

0
µ+({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

ChB−(PB(a, b), µ̂) =

∫ 1

0
µ−({j ∈ J : PB

j (a, b) > t}, {j ∈ J : PB
j (a, b) < −t})dt,

where µ+ and µ− have been defined before.

From an operational point of view, the bipolar aggregation of PB(a, b) can be computed as follows: for

all the criteria j ∈ J , the absolute values of these preferences should be re-ordered in a non-decreasing way,

as follows: |PB
(1)(a, b)| ≤ |PB

(2)(a, b)| ≤ . . . ≤ |PB
(j)(a, b)| ≤ . . . ≤ |PB

(n)(a, b)|. The bipolar Choquet integral of

PB(a, b) with respect to the bicapacity µ̂ can now be determined:

ChB(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂
(

C(j)(a, b), D(j)(a, b)
)

− µ̂
(

C(j+1)(a, b), D(j+1)(a, b)
)

]

(7)
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where PB(a, b) =
[

PB
j (a, b), j ∈ J

]

, J > = {j ∈ J : |PB
(j)(a, b)| > 0}, C(j)(a, b) = {i ∈ J > : PB

i (a, b) ≥

|PB
(j)(a, b)|}, D(j)(a, b) = {i ∈ J > : −PB

i (a, b) ≥ |PB
(j)(a, b)|} and C(n+1)(a, b) = D(n+1)(a, b) = ∅.

We give also the following definitions:

ChB+(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ+
(

C(j)(a, b), D(j)(a, b)
)

− µ+
(

C(j+1)(a, b), D(j+1)(a, b)
)

]

, (8)

ChB−(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ−
(

C(j)(a, b), D(j)(a, b)
)

− µ−
(

C(j+1)(a, b), D(j+1)(a, b)
)

]

. (9)

Proposition 3.1. Given a set of criteria J and a bicapacity µ̂ defined on P (J ), the following statements

are equivalent:

1)















































µ̂(A,B) = µ̂(A, ∅) + µ̂(∅, B) for all (A,B) ∈ P (J ), [C1]

µ̂(A, ∅) = −µ̂(∅, A) for all A ⊆ J , [C2]

and one between

µ̂(A ∪B, ∅) = µ̂(A, ∅) + µ̂(B, ∅) for all A,B ⊆ J : A ∩B = ∅. [C3]

µ̂(∅, A ∪B) = µ̂(∅, A) + µ̂(∅, B) for all A,B ⊆ J : A ∩B = ∅. [C3′]

2) there exists wj ≥ 0, such that
∑

j∈J

wj = 1 and µ̂(A,B) =
∑

j∈A

wj −
∑

j∈B

wj,

3) Given wj ≥ 0 such that
∑

j∈J

wj = 1,
∑

j∈J

wjxj = ChB(x, µ̂), for all x ∈ R
n.

Proof. We shall prove that 1) ⇒ 2) ⇒ 3) ⇒ 2) ⇒ 1) and therefore the three statements are equivalent.

1) ⇒ 2)

By [C1] and [C3], it is obvious that µ̂(A,B) =
∑

j∈A

µ̂({j} , ∅) +
∑

j∈B

µ̂(∅, {j}). Putting wj = µ̂({j} , ∅)

for all j ∈ J we have that wj = µ̂({j} , ∅) ≥ µ̂(∅, ∅) = 0 for monotonicity and normalization conditions

on the bicapacity µ̂ while
∑

j∈J

wj =
∑

j∈J

µ̂({j} , ∅) = µ̂(J , ∅) = 1 for the normalization conditions on

the bicapacity µ̂. Besides, by [C2] we get

µ̂(A,B) =
∑

j∈A

µ̂({j} , ∅) +
∑

j∈B

µ̂(∅, {j}) =
∑

j∈A

µ̂({j} , ∅) −
∑

j∈B

µ̂({j} , ∅) =
∑

j∈A

wj −
∑

j∈B

wj

being the thesis.

7



2) ⇒ 3)

For any x ∈ R
n, after reordering the absolute values of their components in a non-decreasing way

(

|x(1)| ≤ |x(2)| ≤ . . . ≤ |x(n)|
)

, we get its bipolar Choquet integral with respect to the bicapacity µ̂

ChB(x, µ̂) =
∑

j∈J>

|x(j)|
[

µ̂
(

C(j), D(j)

)

− µ̂
(

C(j+1), D(j+1)

)

]

where C(j) = {i ∈ J > : xi ≥ |x(j)|}, D(j) = {i ∈ J > : −xi ≥ |x(j)|}, and C(n+1) = D(n+1) = ∅.

Therefore,

ChB(x, µ̂) =
∑

j∈J>

|x(j)|
[

∑

i: xi≥|x(j)|

wi −
∑

i: −xi≥|x(j)|

wi −
∑

i: xi≥|x(j+1)|

wi +
∑

i: −xi≥|x(j+1)|

wi

]

=

=
∑

j: |x(j)|<|x(j+1)|

|x(j)|
[

∑

i: xi≥|x(j)|

wi −
∑

i: −xi≥|x(j)|

wi −
∑

i: xi≥|x(j+1)|

wi +
∑

i:− xi≥|x(j+1)|

wi

]

=

=
∑

j:|x(j)|<|x(j+1)|

|x(j)|
[

∑

i: xi=|x(j)|

wi −
∑

i: −xi=|x(j)|

wi

]

=
∑

j∈J

xjwj ,

being the thesis.

3) ⇒ 2)

Let us consider A,B ⊆ J such that A∩B = ∅ and the vector x = (1A,−1B, 0(A∪B)C ) that is the vector

having xj = 1 if j ∈ A, xj = −1 if j ∈ B and xj = 0 otherwise. It is easy observing that ChB(x, µ̂) =

µ̂(A,B) and
∑

j∈J

wjxj =
∑

j∈A

wj −
∑

j∈B

wj . Therefore, by holding 3), we get µ̂(A,B) =
∑

j∈A

wj −
∑

j∈B

wj

being the thesis.

2) ⇒ 1)

It is straightforward proving that 2) implies 1).

Note 3.1. Let us observe that point 1) of the previous Proposition translates exactly properties expected in

the classical case. Indeed:

• The reasons in favor and against the preference of an alternative a over an alternative b are taken into

account simultaneously without any antagonistic effect (condition [C1]),

• The importance of a coalition of criteria is always the same independently if it is in favor or against

the preference of a over b (condition [C2]),
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• There is no synergy or redundancy neither between the criteria being in favor of the preference of a

over b nor between the criteria being against this preference (condition [C3] or [C3’]. In fact, let us

observe that in presence of condition [C2], conditions [C3] and [C3’] are equivalent).

By observing that

π(a, b) − π(b, a) =
∑

j∈J

wjPj(a, b) −
∑

j∈J

wjPj(b, a) =
∑

j∈J

wj [Pj(a, b) − Pj(b, a)] =
∑

j∈J

wjP
B
j (a, b)

and that in the classical case conditions [C1], [C2] and [C3] (or [C3’]) are satisfied (see Note 3.1), we get by

Proposition 3.1 that π(a, b) − π(b, a) = ChB(PB(a, b), µ̂).

While ChB(PB(a, b), µ̂) is therefore equivalent to π(a, b)−π(b, a) in the classical PROMETHEE methods,

ChB+(PB(a, b), µ̂) and ChB−(PB(a, b), µ̂) give the measure of the reasons in favor of the preference of a

over b and the measure of the reasons against the preference of a over b, respectively.

By equations (7), (8) and (9) we easily get

ChB(PB(a, b), µ̂) = ChB+(PB(a, b), µ̂) − ChB−(PB(a, b), µ̂) for all a, b ∈ A; (10)

moreover, for each alternative a ∈ A, we can define the bipolar positive flow, the bipolar negative flow and

the bipolar net flow as follows:

φB+(a) =
1

m− 1

∑

b∈A\{a}

ChB+(PB(a, b), µ̂) (11)

φB−(a) =
1

m− 1

∑

b∈A\{a}

ChB−(PB(a, b), µ̂) (12)

φB(a) =
1

m− 1

∑

b∈A\{a}

ChB(PB(a, b), µ̂) (13)

By equation (10), it follows that φB(a) = φB+(a) − φB−(a) for each a ∈ A.

Analogously to the classical PROMETHEE I and II methods, using the bipolar positive, negative and

net flows we propose the bipolar PROMETHEE I and the bipolar PROMETHEE II methods. Given a

pair of alternatives (a, b) ∈ A × A, the bipolar PROMETHEE I method defines a partial order on the set

of alternatives A considering a preference (PI
B), an indifference (II

B) and an incomparability (RI
B) relation

defined as follows:
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





























































aPI
Bb iff























ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a) − ΦB−(a) > ΦB+(b) − ΦB−(b)

aII
Bb iff







ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b)

aRI
Bb otherwise

Given a pair of alternatives (a, b) ∈ A × A, the bipolar PROMETHEE II method provides, instead, a

complete order on A, defining a preference (PII
B ) and an indifference (III

B ) relation as follows: aP II
B b iff

ΦB(a) > ΦB(b), while aIIIB b iff ΦB(a) = ΦB(b).

3.1 Symmetry conditions

Because ChB(PB(a, b), µ̂) is equivalent to π(a, b)−π(b, a) = PC(a, b) in the classical PROMETHEE method,

it is reasonable expecting that, for all a, b ∈ A, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂). The following

Proposition gives conditions to satisfy such a requirement:

Proposition 3.2. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, iff

µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈ P (J ) [C4]

.
Proof. See Appendix.

Observe that condition [C4] considered in the Proposition 3.2 is a generalization of the condition [C2] of

Proposition 3.1; moreover, Proposition 3.1 still works if condition [C2] is replaced by condition [C4].

Analogously, because ChB+(PB(a, b), µ̂) represents how much a is preferred to b and ChB−(PB(b, a), µ̂) rep-

resents how much b is preferred to a, it is reasonable to expect that ChB+(PB(a, b), µ̂)=ChB−(PB(b, a), µ̂).

Sufficient and necessary conditions to get this equality are given by the following Proposition.

Proposition 3.3. ChB+(PB(a, b), µ̂) = ChB−(PB(b, a), µ̂) for all possible a, b, iff µ+(C,D) =

µ−(D,C) for each (C,D) ∈ P (J ).

Proof. Analogous to Proposition 3.2.

Reminding equation (10), the Corollary follows.

Corollary 3.1. ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for all possible a, b, if µ+(C,D) = µ−(D,C)

for each (C,D) ∈ P (J ).

Proof. See Appendix.
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3.2 The 2-additive decomposable bipolar PROMETHEE methods

As seen in the previous section, the use of the bipolar Choquet integral is based on a bicapacity which

assigns numerical values to each element P (J ). Let us remark that the number of elements of P (J ) is 3n.

This means that the definition of a bicapacity requires a rather huge and unpractical number of parameters.

Moreover, the interpretation of these parameters is not always simple for the DM. Therefore, the use of the

bipolar Choquet integral in real-world decision-making problems requires some methodology to assist the

DM in assessing the preference parameters (bicapacities). Several studies dealing with the determination

of the preference parameters representing the relative importance of criteria were proposed in MCDA (see

e.g. Roy and Mousseau 1996). The question of the determination of preference parameters representing

importance of criteria in presence of interaction between criteria was also studied in the context of MAUT

considering the Choquet integral as value function (Angilella et al., 2004, 2010; Marichal and Roubens,

2000).

In the following we consider only the 2-additive bicapacities (Grabisch and Labreuche, 2005a; Fujimoto,

2004), being a particular class of bicapacities.

3.3 Defining a manageable and meaningful bicapacity measure

According to Greco and Figueira (2003), we give the following decomposition of the functions µ+ and µ−

previously defined:

Definition 3.1.

• µ+(C,D) =
∑

j∈C

a+({j}, ∅) +
∑

{j,k}⊆C

a+({j, k}, ∅) +
∑

j∈C, k∈D

a+({j}, {k})

• µ−(C,D) =
∑

j∈D

a−(∅, {j}) +
∑

{j,k}⊆D

a−(∅, {j, k}) +
∑

j∈C, k∈D

a−({j}, {k})

The interpretation of each a±(·) is the following:

• a+({j}, ∅), represents the power of criterion gj by itself; this value is always non negative;

• a+({j, k}, ∅), represents the interaction between gj and gk, when they are in favor of the preference

of a over b; when its value is zero there is no interaction; on the contrary, when the value is positive

there is a synergy effect when putting together gj and gk; a negative value means that the two criteria

are redundant;

• a+({j}, {k}), represents the power of criterion gk against criterion gj , when criterion gj is in favor of

a over b and gk is against to the preference of a over b; this leads always to a reduction or no effect on

the value of µ+ since this value is always non-positive.

11



An analogous interpretation can be applied to the values a−(∅, {j}), a−(∅, {j, k}), and a−({j}, {k}).

For the sake of simplicity, in what follows we will use a+j , a+jk, a+
j|k instead of a+({j}, ∅), a+({j, k}, ∅),

a+({j}, {k}), and a−j , a−jk, a−
j|k instead of a−(∅, {j}), a−(∅, {j, k}) and a−({j}, {k}).

In this way, the bicapacity µ̂, decomposed using µ+ and µ− of Definition 3.1, has the following expression:

µ̂(C,D) = µ+(C,D) − µ−(C,D) =

=
∑

j∈C

a+j −
∑

j∈D

a−j +
∑

{j,k}⊆C

a+jk −
∑

{j,k}⊆D

a−jk +
∑

j∈C, k∈D

a+
j|k −

∑

j∈C, k∈D

a−
j|k (14)

We call such a bicapacity µ̂, a 2-additive decomposable bicapacity . An analogous decomposition has been

proposed directly for µ̂ without considering µ+ and µ− in Fujimoto and Murofushi 2005 and Fujimoto et al.

2007, where a function b : P (J ) → R has been considered such that

µ̂(A,B) =
∑

C⊆A
D⊆B

b(C,D), for all (A,B) ∈ P (J ) (15)

(14) corresponds to (15) in case b(C,D) = 0 if |C ∪D| > 2 and putting

• a+j = b({j} , ∅), and a−j = −b(∅, {j}),

• a+jk = b({j, k} , ∅), and a−jk = −b(∅, {j, k}),

• a+
j|k − a−

j|k = b({j} , {k}).

Notice that, decomposition (14) is richer than decomposition (15) because it permits to distinguish between

a+
j|k and a−

j|k while in (15) they are compensated in b({j} , {k}). The distinction between a+
j|k and a−

j|k

is important in MCDA as shown in Figueira et al. (2009a) with respect to ELECTRE methods. Notice

that another decomposition of the bicapacity has been proposed in Grabisch and Labreuche (2005a). A

comparison between the decomposition (15) and the decomposition in Grabisch and Labreuche (2005a) is

in Fujimoto et al. (2007).

Considering the decompositions of µ+ and µ− given in Definition 3.1, the monotonicity conditions (5), (6)

and the boundary conditions (3), (4) have to be expressed in function of the parameters a+j , a+jk, a+
j|k, a−j ,

a−jk, and a−
j|k as follows:

Monotonicity conditions
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1) µ+(C,D) ≤ µ+(C ∪ {j}, D), ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

⇔ a+j +
∑

k∈C

a+jk +
∑

k∈D

a+
j|k ≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

2) µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

⇔
∑

k∈C

a+
k|j ≤ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

being already satisfied because a+
k|j ≤ 0, ∀k, j ∈ J , k 6= j.

3) µ−(C,D) ≤ µ−(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

⇔ a−j +
∑

k∈D

a−jk +
∑

k∈C

a−
k|j ≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

4) µ−(C,D) ≥ µ−(C ∪ {j}, D), ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

⇔
∑

k∈D

a−
j|k ≤ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

being already satisfied because a−
j|k ≤ 0, ∀j, k ∈ J , j 6= k.

Conditions 1), 2), 3) and 4) ensure the monotonicity of the bi-capacity µ̂, on J , obtained as the difference

of µ+ and µ−, that is,

∀ (C,D), (E,F ) ∈ P (J ) such that C ⊇ E, D ⊆ F, µ̂(C,D) ≥ µ̂(E,F ).

Boundary conditions

1. µ+(J , ∅) = 1, i.e.,
∑

j∈J

a+j +
∑

{j,k}⊆J

a+jk = 1

2. µ−(∅,J ) = 1, i.e.,
∑

j∈J

a−j +
∑

{j,k}⊆J

a−jk = 1

3.4 The 2-additive bipolar Choquet integral

The following Proposition gives an expression of ChB+(x, µ̂) and ChB−(x, µ̂) considering a 2-additive de-

composable bicapacity µ̂.
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Proposition 3.4. Given a 2-additive decomposable bicapacity µ̂, then for all x ∈ R
n

1. ChB+(x, µ̂) =
∑

j∈J ,xj>0

a+j xj +
∑

j,k∈J ,j 6=k
xj ,xk>0

a+jk min{xj , xk} +
∑

j,k∈J ,j 6=k
xj>0, xk<0

a+
j|k min{xj ,−xk}

2. ChB−(x, µ̂) = −
∑

j∈J ,xj<0

a−j xj −
∑

j,k∈J ,j 6=k
xj ,xk<0

a−jk max{xj , xk} −
∑

j,k∈J ,j 6=k
xj>0, xk<0

a−
j|k max{−xj , xk}

Proof. See Appendix.

A result analogous to that one given by Proposition 3.4 was already provided in Fujimoto et al. (2007)

with respect to the Choquet integral expressed by means of a bicapacity. Our result is slightly different

because it refers to the case in which the bicapacity µ̂ can be decomposed in the difference between µ+ and

µ−.

In the following, we provide the symmetry conditions of Propositions 3.2 and 3.3 in terms of the param-

eters a+j , a−j , a+jk, a−jk, a+
j|k and a−

j|k.

Proposition 3.5. Given a 2-additive decomposable bicapacity µ̂, then µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈

P (J ) iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k − a−

j|k = a−
k|j − a+

k|j.

Proof. See Appendix.

Corollary 3.2. Given a 2-additive decomposable bicapacity µ̂, ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) for

all a, b ∈ A iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k − a−

j|k = a−
k|j − a+

k|j.

Proof. It follows by Propositions 3.5 and 3.2.

Proposition 3.6. Given a 2-additive decomposable bicapacity µ̂, then µ+(C,D) = µ−(D,C) for each

(C,D) ∈ P (J ) iff
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1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k = a−

k|j.

Proof. Analogous to Proposition 3.5.

Corollary 3.3. Given a 2-additive decomposable bicapacity µ̂, ChB+(PB(a, b), µ̂) = ChB−(PB(b, a), µ̂) for

all a, b ∈ A iff

1. for each j ∈ J , a+j = a−j ,

2. for each {j, k} ⊆ J , a+jk = a−jk,

3. for each j, k ∈ J , j 6= k, a+
j|k = a−

k|j.

Proof. It follows by Propositions 3.6 and 3.3.

Because the first two conditions of Proposition 3.5 are the same of the first two conditions of Proposition

3.6 but, the third condition of Proposition 3.6 implies the third one of Proposition 3.5, in order to get both

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂) and ChB+(PB(a, b), µ̂) = ChB−(PB(b, a), µ̂) for all a, b ∈ A, we

impose that should be fulfilled the conditions in Proposition 3.6.

4 Eliciting the preference information

On the basis of the considered 2-additive decomposable bicapacity µ̂, and holding the symmetry condition

in Corollary 3.3, we propose the following methodology which simplifies the assessment of the preference

information.

We consider the following information provided by the DM and their representation in terms of linear

constraints:

1. Comparing pairs of actions locally or globally. The constraints represent some pairwise comparisons on

a set of training actions. Given two actions a and b, the DM may prefer a to b, b to a or be indifferent

to both:

(a) the linear constraint associated with aPb (a is locally preferred to b) is:

ChB(PB(a, b), µ̂) > 0;
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(b) the linear constraints associated with aPI
Bb (a is preferred to b with respect to the bipolar

PROMETHEE I method) are:

ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a) − ΦB−(a) > ΦB+(b) − ΦB−(b),























(c) the linear constraint associated with aPII
B b (a is preferred to b with respect to the bipolar

PROMETHEE II method) is:

ΦB(a) > ΦB(b)

(d) the linear constraint associated with aIb (a is locally indifferent to b) is:

ChB(PB(a, b), µ̂) = 0

(e) the linear constraints associated with aII
Bb (a is indifferent to b with respect to the bipolar

PROMETHEE I method) are:

ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b),







(f) the linear constraint associated with aIII
B b (a is indifferent to b with respect to the bipolar

PROMETHEE II method) is:

ΦB(a) = ΦB(b)

2. Comparison of the intensity of preferences between pairs of actions. In some cases, the DM is able

to provide information on intensity of preference. For example, she could state that a is strongly

preferred to b while c is weakly preferred to d and this situation could be summarized saying that a

is preferred to b more than c is preferred to d (see, for example, Debreu 1979, Dyer and Sarin 1979,

Bana e Costa and Vansnick 1994, Figueira et al. 2009b).

Given four actions a, b, c and d:

(a) the linear constraints associated with (a, b)P(c, d) (the local preference of a over b is larger than

the local preference of c over d) is:

ChB(PB(a, b), µ̂) > ChB(PB(c, d), µ̂)
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(b) the linear constraints associated with (a, b)I(c, d) (the local preference of a over b is the same of

the local preference of c over d) is:

ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂)

3. Importance of criteria. A partial ranking over the set of criteria J may be provided by the DM:

(a) criterion gj is more important than criterion gk, which leads to the constraint aj > ak;

(b) criterion gj is equally important to criterion gk, which leads to the constraint aj = ak.

4. The sign of interactions. The DM may be able, in certain cases, to provide the sign of some interactions.

For example, if there is a synergy effect when criterion gj interacts with criterion gk, the following

constraint should be added to the model: ajk > 0.

5. Interaction between pairs of criteria. The DM can provide some information about interaction between

criteria:

a) if the DM feels that interaction between gj and gk is greater than the interaction between gp and

gq, the constraint should be defined as follows: |ajk| > |apq| where in particular:

• if both couples of criteria are synergic then: ajk > apq,

• if both couples of criteria are redundant then: ajk < apq,

• if (j, k) is a couple of synergic criteria and (p, q) is a couple of redundant criteria, then:

ajk > −apq,

• if (j, k) is a couple of redundant criteria and (p, q) is a couple of synergic criteria, then:

−ajk > apq.

b) if the DM feels that the strength of the interaction between gj and gk is the same of the strength

of the interaction between gp and gq, the constraint will be the following: |ajk| = |apq| and in

particular:

• if both couples of criteria are synergic or redundant then: ajk = apq,

• if one couple of criteria is synergic and the other is redundant then: ajk = −apq,

6. The power of the opposing criteria. Concerning the power of the opposing criteria several situations

may occur. For example:

a) when the opposing power of gk is larger than the opposing power of gh, with respect to gj ,

which expresses a positive preference, we can define the following constraint: a+
j|k < a+

j|h (because

a+
j|h ≤ 0 and a−

j|h ≤ 0 for all j, k with j 6= k);
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b) if the opposing power of gk, expressing negative preferences, is larger with gj rather than with

gh, the constraint will be a+
j|k < a+

h|k.

4.1 A linear programming model

All the constraints presented in the previous section along with the symmetry, boundary and monotonicity

conditions can now be put together and form a system of linear constraints. Strict inequalities can be

converted into weak inequalities by adding a variable ε. It is well-know that such a system has a feasible

solution if and only if when maximizing ε, its value is strictly positive (Marichal and Roubens, 2000).

Considering constraints given by Corollary 3.3 for the symmetry condition, the linear programming model

can be stated as follows (where jPk means that criterion gj is more important than criterion gk; the

remaining relations have a similar interpretation):

Max ε

ChB(PB(a, b), µ̂) ≥ ε if aPb, ChB(PB(a, b), µ̂) = 0 if aIb,

ΦB+(a) ≥ ΦB+(b),

ΦB−(a) ≤ ΦB−(b),

ΦB+(a)− ΦB−(a) ≥ ΦB+(b)− ΦB−(b) + ε



















if aPI
Bb

ΦB+(a) = ΦB+(b),

ΦB−(a) = ΦB−(b)







if aII
Bb

ΦB(a) ≥ ΦB(b) + ε if aPII
B b ΦB(a) = ΦB(b) if aIII

B b

ChB(PB(a, b), µ̂) ≥ ChB(PB(c, d), µ̂) + ε if (a, b)P(c, d), ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂) if (a, b)I(c, d),

aj − ak ≥ ε if jPk, aj = ak if jIk,

|ajk| − |apq | ≥ ε if {j, k}P{p, q}, (see point 5.a) of the previous subsection )

|ajk| = |apq | if {j, k}I{p, q}, (see point 5.b) of the previous subsection )

ajk ≥ ε if there is synergy between criteria j and k,

ajk ≤ −ε if there is redundancy between criteria j and k,

ajk = 0 if criteria j and k are not interacting,

Power of the opposing criteria of the type 6:

a+
j|k

− a+
j|p

≥ ε, a−
j|k

− a−
j|p

≥ ε,

a+
j|k

− a+
p|k

≥ ε, a−
j|k

− a−
p|k

≥ ε,

Symmetry conditions (Proposition 3.3):

a+
j|k

= a−
k|j

, ∀ j, k ∈ J , j 6= k

Boundary and monotonicity conditions:

∑

j∈J

aj +
∑

{j,k}⊆J

ajk = 1,

aj ≥ 0 ∀ j ∈ J , a+
j|k

, a−
j|k

≤ 0 ∀ j, k ∈ J ,

aj +
∑

k∈C

ajk +
∑

k∈D

a+
j|k

≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J ),

aj +
∑

k∈D

ajk +
∑

h∈C

a−
h|j

≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J ).



























































































































































































































































































































EAR
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4.2 Restoring PROMETHEE

The condition which allows to restore the classical PROMETHEE methods is the following:

1. ∀j, k ∈ J , ajk = a+
j|k = a−

j|k = 0.

If Condition 1. is not satisfied and the following condition holds

2. ∀j, k ∈ J , a+
j|k = a−

j|k = 0,

then the comprehensive preference of a over b is calculated as the difference between the Choquet integral

of the positive preferences and the Choquet integral of the negative preferences, with a common capacity µ

on J for the positive and the negative preferences, i.e. there exists µ : 2J → [0, 1], with µ(∅) = 0, µ(J ) = 1,

and µ(A) ≤ µ(B) for all A ⊆ B ⊆ J , such that

ChB(PB(a, b), µ̂) =

∫ 1

0
µ({j ∈ J : PB

j (a, b) > t})dt−

∫ 1

0
µ({j ∈ J : PB

j (a, b) < −t})dt.

We shall call this type of aggregation of preferences, the symmetric Choquet integral PROMETHEE method.

Let us remember that the symmetric Choquet integral is also known as the Šipoš integral (Šipoš, 1979).

If neither 1. nor 2. are satisfied, but the following condition holds

3. ∀j, k ∈ J , a+
j|k = a−

k|j ,

then we have the Bipolar PROMETHEE methods.

A discussion about the relationship between the bipolar Choquet integral, the Šipoš integral and other

model translating bipolar preferences, as the Cumulative Prospect Theory (CPT) (Tversky and Kahneman,

1992), go outside the aim of this paper but we invite the interested reader to look at Grabisch and Labreuche

(2010) where these relationships are deeply treated.

4.3 A constructive learning preference information elicitation process

The previous Conditions 1.-3. suggest a proper way to deal with the linear programming model in order to

assess the interactive bipolar criteria coefficients. Indeed, it is very wise trying before to elicit weights con-

cordant with the classical PROMETHEE method. If this is not possible, one can consider a PROMETHEE

method which aggregates positive and negative preferences using the Choquet integral that is the symmetric

Choquet integral PROMETHEE method. If, by proceeding in this way, we are not able to represent the
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DM’s preferences, then we can take into account a more sophisticated aggregation procedure by using the

bipolar PROMETHEE method. This way to progress from the simplest to the most sophisticated model

can be outlined in a four steps procedure as follows:

1. Solve the linear programming problem

Max ε = ε1

EAR

ajk = a+
j|k = a−

j|k = 0, ∀j, k ∈ J







E1

(16)

adding to EAR
the constraint related to the previous Condition 1. If E1 is feasible and ε1 > 0, then the

obtained preferential parameters are concordant with the classical PROMETHEE method. Otherwise,

2. Solve the linear programming problem

Max ε = ε2

EAR

a+
j|k = a−

j|k = 0, ∀j, k ∈ J







E2

(17)

adding to EAR
the constraint related to the previous Condition 2. If E2 is feasible and ε2 > 0, then

the information is concordant with the symmetric Choquet integral PROMETHEE method having a

unique capacity for the negative and the positive part. Otherwise,

3. Solve the linear programming problem

Max ε = ε3

EAR

(18)

If E3 is feasible and ε3 > 0, then the information is concordant with the bipolar PROMETHEE

method. Otherwise,

4. We can try to help the DM by providing some information about inconsistent judgments, when it is

the case, by using a constructive learning procedure analogous to that one proposed in Mousseau et al.

(2003). In fact, in the linear programming model some of the constraints cannot be relaxed, that is,

the basic properties of the model (symmetry, boundary and monotonicity conditions). The remaining

constraints can lead to an infeasible linear system which means that the DM provided inconsistent
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information about her/his preferences. The methods proposed in Mousseau et al. (2003) can then be

used in this context, providing the DM some useful information about inconsistent judgments.

5 ROR and Bipolar PROMETHEE methods

In the previous sections we dealt with the problem of finding a bicapacity restoring preference information

provided by the DM in case multiple criteria evaluations are aggregated by the Bipolar PROMETHEE

method. Generally, there could exist more than one model (in our case the model will be a bicapacity, but

in other contexts it could be a utility function or an outranking relation) compatible with the preference

information provided by the DM on the training set of alternatives. Each compatible model restores the

preference information provided by the DM but two different compatible models could compare the other

alternatives not provided as examples by the DM in a different way. For this reason, the choice of one of

these models among those compatible could be considered arbitrary. To take into account not only one but

the whole set of models compatible with the preference information provided by the DM, we consider the

ROR (Greco et al., 2010). This approach considers the whole set of models compatible with the preference

information provided by the DM building two preference relations: the weak necessary preference relation,

for which alternative a is necessarily weakly preferred to alternative b (and we write a %N b), if a is at least

as good as b for all compatible models, and the weak possible preference relation, for which alternative a is

possibly weakly preferred to alternative b (and we write a %P b), if a is at least as good as b for at least one

compatible model.

Considering the bipolar flows (11)-(13) and the comprehensive Choquet integral in equation (10), given the

alternatives a, b ∈ A, we say that a outranks b (or a is at least as good as b):

• locally, if ChB(PB(a, b), µ̂) ≥ 0;

• globally and considering the bipolar PROMETHEE I method, if ΦB+(a) ≥ ΦB+(b), ΦB−(a) ≤ ΦB−(b);

• globally and considering the bipolar PROMETHEE II method, if ΦB(a) ≥ ΦB(b).

To check if a is necessarily preferred to b, we look if it is possible that a does not outrank b. Locally,

this means that it is possible that there exists a bicapacity µ̂ such that ChB(PB(a, b), µ̂) < 0; globally,

considering the bipolar PROMETHEE I method this means that ΦB+(a) < ΦB+(b) or ΦB−(a) > ΦB−(b),

while considering the bipolar PROMETHEE II method this means that ΦB(a) < ΦB(b). Given the following

set of constraints,
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EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) + ε ≤ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) + ε ≤ ΦB+(b) + 2M1 and ΦB−(a) + 2M2 ≥ ΦB−(b) + ε

where Mi ∈ {0, 1}, i = 1, 2, and
∑2

i=1Mi ≤ 1

if one verifies the truth of local outranking:

ChB(PB(a, b), µ̂) + ε ≤ 0































































































































EN (a, b)

we say that a is weakly necessarily preferred to b if EN (a, b) is infeasible or ε∗ ≤ 0 where ε∗ = max ε s.t.

EN (a, b).

To check if a is possibly preferred to b, we check if it is possible that a outranks b for at least one bicapacity

µ̂. Locally, this means that there exists a bicapacity µ̂ such that ChB(PB(a, b), µ̂) ≥ 0; globally, considering

the bipolar PROMETHEE I method this means that ΦB+(a) ≥ ΦB+(b) and ΦB−(a) ≤ ΦB−(b), while

considering the bipolar PROMETHEE II method this means that ΦB(a) ≥ ΦB(b). Given the following set

of constraints,

EAR

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

ΦB(a) ≥ ΦB(b)

if exploited in the way of the bipolar PROMETHEE I method, then:

ΦB+(a) ≥ ΦB+(b) and ΦB−(a) ≤ ΦB−(b)

if one verifies the truth of local outranking:

ChB(PB(a, b), µ̂) ≥ 0















































































































EP (a, b)

we say that a is weakly possibly preferred to b if EP (a, b) is feasible and ε∗ > 0 where ε∗ = max ε s.t.

EP (a, b).
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6 Didactic example

Inspired by an example in literature (Grabisch, 1996), let us consider the problem of evaluating High School

students according to their grades in Mathematics, Physics and Literature. In the following we suppose that

the Director is the DM, while we will cover the role of analyst helping and supporting the DM in (her)his

evaluations.

The Director thinks that scientific subjects (Mathematics and Physics) are more important than Literature.

However, when students a and b are compared, if a is better than b both at Mathematics and Physics but a

is much worse than b at Literature, then the Director has some doubts about the comprehensive preference

of a over b.

Mathematics and Physics are in some sense redundant with respect to the comparison of students, since

usually students which are good at Mathematics are also good at Physics. As a consequence, if a is better

than b at Mathematics, the comprehensive preference of the student a over the student b is stronger if a is

better than b at Literature rather than if a is better than b at Physics.

Let us consider the students whose grades (belonging to the range [0, 20]) are represented in Table 1 and

the following formulation of the preference of a over b with respect to each criterion gj , for all j = (M)

Mathematics, (Ph) Physics, (L) Literature.

Students Mathematics Physics Literature

s1 16 16 16
s2 15 13 18
s3 19 18 14
s4 18 16 15
s5 15 16 17
s6 13 13 19
s7 17 19 15
s8 15 17 16

Table 1: Evaluations of the students

Pj(a, b) =























0 if gj(b) ≥ gj(a)

(gj(a) − gj(b))/4 if 0 < gj(a) − gj(b) ≤ 4

1 otherwise

From the values of the partial preferences Pj(a, b), we obtain the bipolar preference function PB
j (a, b)

with respect to each criterion gj , for j = M,Ph,L using the definition (1). Thus, to each pair of students

(si, sj) is associated a vector of three elements:

PB(si, sj) =
[

PB
M (si, sj), P

B
Ph(si, sj), P

B
L (si, sj)

]

; for example, to the pair of students (s1, s2) is associated
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the vector PB(s1, s2) = [0.25, 0.75,−0.5].

Let us suppose that the Dean provides the following information regarding some pairs of students:

• student s1 is preferred to student s2 more than student s3 is preferred to student s4,

• student s7 is preferred to student s8 more than student s5 is preferred to student s6.

As explained in section 4, this information is translated by the constraints:

ChB(PB(s1, s2), µ̂) > ChB(PB(s3, s4), µ̂), and ChB(PB(s7, s8), µ̂) > ChB(PB(s5, s6), µ̂)

Following the procedure described in section 4.3, at first we check if the classical PROMETHEE method

and the symmetric Choquet integral PROMETHEE method are able to restore the preference information

provided by the Dean; solving the optimization problems (16) and (17), we get ε1 < 0 and ε2 < 0 and

therefore neither the classical PROMETHEE method nor the symmetric Choquet integral PROMETHEE

method are able to explain the preferences provided by the Dean. Solving the optimization problem (18),

we get ε3 > 0; this means that the information provided by the Dean can be explained by the Bipolar

PROMETHEE method.

In order to better understand the problem at hand, we suggested to the Dean to use the ROR applied to

the bipolar PROMETHEE method as discussed in the previous section. Using the first piece of preference

information, we get the necessary and possible preference relations shown in Table 2 at local level and

considering the bipolar PROMETHEE II and PROMETHEE I methods. In Table 2(a), the value 1 in

position (i, j) means that si is necessarily locally preferred to sj while the viceversa corresponds to the value

0. Analogous meaning have the values 1 and 0 in in Tables 2(b) and 2(c) respectively.

Table 2: Necessary preference relations after the first piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 0 1 0 0
s2 0 0 0 0 0 0 0 0
s3 1 1 0 1 0 1 0 0
s4 0 1 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 1 1 0 1
s8 0 1 0 0 1 1 0 0

(b) Bipolar PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 1 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 1 1 0 1
s8 0 0 0 0 0 0 0 0

(c) Bipolar PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 0 0 0 0 0
s8 0 0 0 0 0 0 0 0

Looking at Tables 2, we highlight that s7, s3 and s5 are surely the best among the eight students considered.

In fact, s7 is necessarily preferred to five out of the other seven students both locally and considering

the bipolar PROMETHEE II method and, at the same time, (s)he is the only student being necessarily

preferred to some other student using the bipolar PROMETHEE I method. s3 is necessarily preferred to
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Table 3: Possible preference relations after the first piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 1 1 1 0 1
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 0
s6 0 1 0 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(b) Bipolar PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 1 0 1 1 0 1 0 1
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 1
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(c) Bipolar PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 0 0 0 1 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 1 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

four out of the other seven students locally, and (s)he is necessarily preferred to s4 considering the bipolar

PROMETHEE II method. At the same time, (s)he is locally possibly preferred to s7 (see Table 3). s5 is

necessarily preferred to s2 and s6 considering the bipolar PROMETHEE II method. In order to get a more

insight on the problem at hand, we suggest to the Dean to provide other information (s)he is sure about.

For this reason, the Dean states that, locally, s2 is preferred to s6 and s8 is preferred to s1.

Table 4: Necessary preference relations after the second piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 0 1 0 0
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 0 1
s4 1 1 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 1 1 0 1
s8 1 1 0 0 1 1 0 0

(b) Bipolar PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 1 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 1 0 0 0 1 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 1 1 0 1
s8 0 0 0 0 0 0 0 0

(c) Bipolar PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 0 0 0 0 0 0 0
s2 0 0 0 0 0 0 0 0
s3 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 0
s7 1 1 0 1 0 0 0 1
s8 0 0 0 0 0 0 0 0

Table 5: Possible preference relations after the second piece of preference information

(a) Local

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 0 1 1 0 0
s2 0 0 0 0 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 0 1 0 1 0 0
s6 0 0 0 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 0 1 1 1 0 0

(b) Bipolar PROMETHEE II

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 1 1 1 1 0 1
s2 1 0 1 1 0 1 0 1
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 1 1 0 1 0 1
s6 1 1 1 1 0 0 0 1
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

(c) Bipolar PROMETHEE I

s1 s2 s3 s4 s5 s6 s7 s8

s1 0 1 0 1 1 1 0 1
s2 0 0 0 1 0 1 0 0
s3 1 1 0 1 1 1 1 1
s4 1 1 0 0 1 1 0 1
s5 1 1 1 1 0 1 0 1
s6 0 1 1 1 0 0 0 0
s7 1 1 1 1 1 1 0 1
s8 1 1 1 1 1 1 0 0

Translating these preference information using the constraints ChB(PB(2, 6), µ̂) > 0 and ChB(PB(8, 1), µ̂) >

0, and computing again the necessary and possible preference relations locally and considering both the

bipolar PROMETHEE methods, we get the results shown in Tables 4 and 5. In these Tables, underlined

cells correspond to new information we have got using the second piece of information provided by the

Dean. In particular, in Tables 4 the cell in correspondence of the pair of students (si, sj) is underlined if

si was not necessarily preferred to sj after the first iteration, but si is necessarily preferred to sj after the
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second iteration; in Tables 5, the cell in correspondence of the pair of students (si, sj) is underlined if si

was possibly preferred to sj after the first iteration but si is not possibly preferred to sj after the second

iteration anymore. Looking at Tables 4 and 5, the Dean is addressed to consider s7 as the best student. In

fact, even if s7 and s3 are locally necessarily preferred to all other six considered students, s7 is still the only

one being necessarily preferred to someone else considering the bipolar PROMETHEE I method. Besides,

looking at Table 5, we get that s3 is the only student being possibly preferred to s7 locally and with respect

to the bipolar PROMETHEE I and PROMETHEE II methods but, at the same time, everyone except s4,

is possibly preferred to s3 considering the bipolar PROMETHEE I method while four students (s5, s6, s7

and s8) are possibly preferred to s3 with respect to the bipolar PROMETHEE I method.

7 Conclusions

In this paper we proposed a generalization of the classical PROMETHEE methods. A basic assumption

of PROMETHEE methods is the absence of interaction (synergy, redundancy and antagonism) between

criteria. We developed a methodology permitting to take into account interaction between criteria (synergy,

redundancy and antagonism effects) within PROMETHEE methods by using the bipolar Choquet integral.

In this way we obtained a new method called the Bipolar PROMETHEE method.

The DM can give directly the preferential parameters of the method; however, due to their great number,

it is advisable using some indirect procedure to elicit the preferential parameters from some preference

information provided by the DM.

Since, in general, there is more than one set of parameters compatible with these preference information,

we proposed to use the Robust Ordinal Regression (ROR) to consider the whole family of compatible sets

of preferential parameters. We believe that the proposed methodology can be successfully applied to many

real world problems where interacting criteria have to be considered; besides, in a companion paper, we

propose to apply the SMAA methodology to the classical and to the bipolar PROMETHEE methods (for a

survey on SMAA methods see Tervonen and Figueira 2008).
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S. Greco, R. S lowiński, J.R. Figueira, and V. Mousseau. Robust ordinal regression. In M. Ehrgott,

J. Figueira, and S. Greco, editors, Trends in Multiple Criteria Decision Analysis, pages 273–320. Springer,

Berlin, 2010.

R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs. J. Wiley,

New York, 1976.

J. Marichal and M. Roubens. Determination of weights of interacting criteria from a reference set. European

Journal of Operational Research, 124(3):641–650, 2000.

V. Mousseau, J. Figueira, L. Dias, C. Gomes da Silva, and J. Cĺımaco. Resolving inconsistencies among
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Appendix

Proof of Proposition 3.2

Let us prove that if µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈ P (J ), then ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂).
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As noticed, PB
j (a, b) = −PB

j (b, a) for all j ∈ J , and consequently |PB
(j)(a, b)| = | − PB

(j)(b, a)| = |PB
(j)(b, a)|

for all j ∈ J .

By this, it follows that:

(α) C(j)(a, b) = {i ∈ J > : PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : −PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= D(j)(b, a);

(β) D(j)(a, b) = {i ∈ J > : −PB
i (a, b) ≥ |PB

(j)(a, b)|} = {i ∈ J > : PB
i (b, a) ≥ |PB

(j)(b, a)|} =

= C(j)(b, a).

By (α) and (β) we have that

(γ) ChB(PB(a, b), µ̂) =

=
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂(C(j)(a, b), D(j)(a, b)) − µ̂(C(j+1)(a, b), D(j+1)(a, b))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(D(j)(b, a), C(j)(b, a)) − µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

.

Since µ̂(C,D) = −µ̂(D,C), ∀(C,D) ∈ P (J ), by (γ) we have that,

(δ) ChB(PB(b, a), µ̂) =

=
∑

j∈J>

|PB
(j)(b, a)|

[

µ̂(C(j)(b, a), D(j)(b, a)) − µ̂(C(j+1)(b, a), D(j+1)(b, a))
]

=

=
∑

j∈J>

|PB
(j)(b, a)|

[

− µ̂(D(j)(b, a), C(j)(b, a)) + µ̂(D(j+1)(b, a), C(j+1)(b, a))
]

= −ChB(PB(a, b), µ̂).

Let us now prove that if ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), then µ̂(C,D) = −µ̂(D,C). Let us

consider the pair (a, b) such that,

PB
j (a, b) =























1 if j ∈ C

−1 if j ∈ D

0 otherwise

(19)

In this case we have that ChB(PB(a, b), µ̂) = µ̂(C,D) and ChB(PB(b, a), µ̂) = µ̂(D,C). Thus if

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), by (iv) we obtain that µ̂(C,D) = −µ̂(D,C) and the proof is

concluded.

Proof of Corollary 3.1

This can be seen as a Corollary both of Proposition 3.2 and Proposition 3.3. In fact,
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• µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈

P (J ), and by Proposition 3.2, it follows the thesis.

• µ+(C,D) = µ−(D,C) for each (C,D) ∈ P (J ) implies that ChB+(PB(a, b), µ̂) = ChB−(PB(b, a), µ̂)

(by Proposition 3.3) and from this it follows obviously the thesis by equation (10).

Proof of Proposition 3.4

We shall prove only part 1. Proof of part 2. can be obtained analogously.

If the bicapacity µ̂ is 2−additive decomposable, then

ChB+(x, µ̂) =
∑

j∈J>

|x(j)|
[

µ+(C(j), D(j)) − µ+(C(j+1), D(j+1))
]

=

=
∑

j∈J>

|x(j)|
[(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

+

+
(

∑

h,k∈J>,h 6=k,xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,xh,xk≥|x(j+1)|

a+hk

)

+

+
(

∑

h,k∈J>,h 6=k,xh,−xk≥|x(j)|

a+
h|k −

∑

h,k∈J>,h 6=k,xh,−xk≥|x(j+1)|

a+
h|k

)]

Let us remark that,

a)
(

∑

k∈J>,xk≥|x(j)|

a+k −
∑

k∈J>,xk≥|x(j+1)|

a+k

)

=



























∑

k∈J>,xk=|x(j)|

a+k if |x(j)| < |x(j+1)|

0 otherwise

b)
(

∑

h,k∈J>,h 6=k,
xh,xk≥|x(j)|

a+hk −
∑

h,k∈J>,h 6=k,
xh,xk≥|x(j+1)|

a+hk

)

=



























∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk if |x(j)| < |x(j+1)|

0 otherwise

c)
(

∑

h,k∈J>,h 6=k,
xh,−xk≥|x(j)|

a+
h|k −

∑

h,k∈J>,h 6=k,
xh,−xk≥|x(j+1)|

a+
h|k

)

=



























∑

h,k∈J>,h 6=k,
min{xh,−xk}=|x(j)|

a+
h|k if |x(j)| < |x(j+1)|

0 otherwise

Considering a) − c) we get that:
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χ) =
∑

j∈J>,
|x(j)|<|x(j+1)|

|x(j)|
[

∑

k∈J>,xk=|x(j)|

a+k +
∑

h,k∈J>,h 6=k,
min{xh,xk}=|x(j)|

a+hk +
∑

h,k∈J>,h 6=k,
min{xh,−xk}=|x(j)|

a+
h|k

]

and from this it follows the thesis.

Proof of Proposition 3.5

First, let us prove that

(a) µ̂(C,D) = −µ̂(D,C)

implies 1., 2. and 3. For each j ∈ J ,

(b) µ̂({j}, ∅) = a+j and µ̂(∅, {j}) = −a−j

From (a) and (b) we have,

a+j = µ̂({j}, ∅) = −µ̂(∅, {j}) = a−j

which is 1.

For each {j, k} ⊆ J we have that,

(c) µ̂({j, k}, ∅) = a+j + a+k + a+jk and µ̂(∅, {j, k}) = −a−j − a−k − a−jk

Being µ̂({j, k}, ∅) = −µ̂(∅, {j, k}), and being a+j = a−j and a+k = a−k by 1., we have that for each

{j, k} ⊆ J , a+jk = a−jk, i.e. 2.

For all j, k ∈ J with j 6= k, we have:

µ̂({j}, {k}) = a+j − a−k + a+
j|k − a−

j|k

µ̂({k}, {j}) = a+k − a−j + a+
k|j − a−

k|j

Being µ̂({j}, {k}) = −µ̂({k}, {j}) and having proved that a+j = a−j , ∀j, we obtain that a+
j|k − a−

j|k =

−a+
k|j + a−

k|j i.e. 3.

It is straightforward to prove that 1., 2., and 3. imply µ̂(C,D) = −µ̂(D,C).
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