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Abstract. In this paper we consider the bipolar approach to Multiple
Criteria Decision Analysis (MCDA). In particular we aggregate positive
and negative preferences by means of the bipolar PROMETHEE method.
To elicit preferences we consider Robust Ordinal Regression (ROR) that
has been recently proposed to derive robust conclusions through the use
of the concepts of possible and necessary preferences. It permits to take
into account the whole set of preference parameters compatible with the
preference information given by the Decision Maker (DM).
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1 Introduction

Multiple Criteria Decision Analysis (MCDA) (for state-of-the-art surveys on
MCDA see [5]) dealing with the comparison of the reasons in favor and against
a preference of an alternative a over an alternative b is of the utmost importance.
This kind of comparison is important, but it is only a part of the question. Indeed,
after recognizing the criteria in favor and the criteria against of the preference
of a over b, there is the very tricky question of comparing them (for a general
discussion about bipolar aggregations of pros and cons in MCDA see [14]). In
this second step, some important observations must be taken into account.

One element that should be considered is the synergy or the redundancy of
criteria in favor of a preference of an action a against an action b. Of course there
could be similar effects of synergy and redundancy regarding the criteria against
the comprehensive preference of a over b. We have also to take into account the
antagonism effects related to the fact that the importance of criteria may also

depend on the criteria which are opposed to them. Those types of interactions
between criteria have been already taken into consideration in the ELECTRE
methods [13]. In this paper, we deal with the same problem using the bipolar
Choquet integral [7, 8] (for the original Choquet integral see [4]) applied to the
PROMETHEE method [3].

The paper is organized as follows. In the next section we introduce the appli-
cation of the bipolar Choquet integral to PROMETHEE method. In the third



section, we discuss elicitation of preference information permitting to fix the
value of the preference parameter of the model (essentially the bicapacity of the
bipolar Choquet integral). To take into account that there may be not only one,
but a plurality of bicapacities representing the preference information, we pro-
pose also to adopt Robust Ordinal Regression (ROR) [12, 6, 1, 11, 10], in order
to take into account the whole set of bicapacities compatible with the Decision
Maker (DM) preferences. Within ROR we distinguish between necessary prefer-
ence, in case an alternative a is at least as good as an alternative b for all the
compatible bicapacities, and the possible preference, in case an alternative a is
at least as good as an alternative b for at least one of the compatible bicapacities.
The last section contains conclusions.

2 The Bipolar PROMETHEE

Let us consider a set of actions or alternatives A = {a, b, c, . . .} evaluated with
respect to a set of criteria G = {g1, . . . , gn}, where gj : A → R, j ∈ J =
{1, . . . , n} and |A| = m. PROMETHEE [2, 3] is a well known MCDA method
that aggregates preference information of a DM using an outranking relation.
Considering a weight wj representing the importance of criterion gj within the
family of criteria G, an indifference threshold qj , and a preference threshold pj ,
for each criterion gj , PROMETHEE builds a non decreasing function Pj(a, b)
with respect to the difference dj(a, b) = gj(a)− gj(b), whose formulation (see [2]
for other formulations) could be the following

Pj(a, b) =







0 if dj(a, b) ≤ qj
dj(a,b)−qj

pj−qj
if qj < dj(a, b) < pj

1 if dj(a, b) ≥ pj

It represents the degree of preferability of a over b on criterion gj .
For each ordered pair of alternatives (a, b) ∈ A, PROMETHEEmethod computes
the value

π(a, b) =
∑

j∈J

wjPj(a, b)

representing how much alternative a is preferred to alternative b. It can assume
values between 0 and 1 and obviously the greater the value of π(a, b), the greater
the preference of a over b is.
In order to compare an alternative a against all the other alternatives of the set
A, PROMETHEE computes the positive and the negative net flow of a in the
following way:

φ−(a) =
1

m− 1

∑

c∈A\{a}

π(c, a) and φ+(a) =
1

m− 1

∑

c∈A\{a}

π(a, c).

These net flows represent, respectively, how much the alternatives in A\{a} are
preferred to a and how much a is preferred to the alternatives in A\{a}. Besides



the negative and the positive flows, PROMETHEE computes also the net flow
φ(a) = φ+(a) − φ−(a). Taking into account these net flows, three relations can
be built: preference (P), indifference (I), and incomparability (R). In order to
see how alternatives a and b are compared in PROMETHEE I method, see [2];
in case of PROMETHEE II, the comparison between alternatives a and b is
done considering their net flows φ(a) and φ(b). In particular, we have that a is
preferred to b if φ(a) > φ(b), while a and b are indifferent if φ(a) = φ(b).

Within the bipolar framework, the bipolar preference functions
PB
j : A×A → [−1, 1], j ∈ J are aggregated as follows

PB
j (a, b) = Pj(a, b)− Pj(b, a) =















Pj(a, b) if Pj(a, b) > 0

−Pj(b, a) if Pj(a, b) = 0

2.1 Determining comprehensive preferences

The aggregation of bipolar preference functions PB
j through the bipolar Choquet

integral is based on a bicapacity [7, 8], being a function µ̂ : P (J ) → [−1, 1], where
P (J ) = {(A,B) : A,B ⊆ J and A ∩B = ∅}, such that

– µ̂(∅,J ) = −1, µ̂(J , ∅) = 1, µ̂(∅, ∅) = 0,
– for all (A,B), (C,D) ∈ P (J ), if A ⊆ C and B ⊇ D, then µ̂(A,B) ≤ µ̂(C,D).

The interpretation of the bicapacity is the following: for (A,B) ∈ P (J ), and
considering a pair of alternatives (a, b) ∈ A × A, µ̂(A,B) gives the net weight
for the preference of a over b of criteria from A in favor of a and criteria from B

in favor of b.
Given (a, b) ∈ A × A, the bipolar Choquet integral of preference functions

PB
j (a, b) representing the comprehensive preference of a over b with respect to

the bicapacity µ̂ can be written as follows

ChB(PB(a, b), µ̂) =

∫ 1

0

µ̂({j ∈ J : PB
j (a, b) > t}, {j ∈ J : PB

j (a, b) < −t})dt.

Operationally, the bi-polar aggregation function PB
j (a, b) can be computed

as follows. For all the criteria j ∈ J , the absolute values of this function should
be re-ordered in a non-decreasing way,

|PB
(1)(a, b)| ≤ |PB

(2)(a, b)| ≤ . . . ≤ |PB
(j)(a, b)| ≤ . . . ≤ |PB

(n)(a, b)|

The comprehensive bi-polar Choquet integral with respect to the bicapacity µ̂

for the pair (a, b) ∈ A×A can now be determined as follows:

ChB(PB(a, b), µ̂) =
∑

j∈J>

|PB
(j)(a, b)|

[

µ̂(C(j−1), D(j−1))− µ̂(C(j), D(j))
]



where:
µ̂ is a bi-capacity, PB(a, b) =

[

PB
j (a, b), j ∈ J

]

, C(0) =
{

j ∈ J : PB
j (a, b) > 0

}

,

D(0) =
{

j ∈ J : PB
j (a, b) < 0

}

, J> = {j ∈ J : |PB
(j)(a, b)| > 0}, C(j) = {i ∈

J> : PB
i (a, b) ≥ |PB

(j)(a, b)|}, and D(j) = {i ∈ J> : −PB
i (a, b) ≥ |PB

(j)(a, b)|}.

The value ChB(PB(a, b), µ̂) gives the comprehensive preference of a over b

and it is equivalent to π(a, b)−π(b, a) = PC(a, b) in the classical PROMETHEE
method. Let us remark that it is reasonable to expect that PC(a, b) = −PC(b, a).
This leads to the following symmetry condition,

ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂).

Proposition 2.1 ChB(PB(a, b), µ̂) = −ChB(PB(b, a), µ̂), for all possible

a, b, iff µ̂(C,D) = −µ̂(D,C) for each (C,D) ∈ P (J ).

The above redefinition of π(a, b)−π(b, a) in bi-polar terms leads to the following
bi-polar definition of the net flows,

φB(a) =
1

m− 1

∑

c∈A\{a}

ChB(PB(a, c), µ̂)

2.2 Determining the importance, the interaction, and the power of

the opposing criteria

Several studies dealing with the determination of the relative importance of
criteria were proposed in MCDA (see e.g. [17]). The question of the interaction
between criteria was also studied in the context of MAUT methods [15]. In this
section we present a quite similar methodology for outranking methods, which
takes into account also the power of the opposing criteria.

2.3 The case of PROMETHEE method

The use of the bi-polar Choquet integral is based on a bi-polar capacity which
assigns numerical values to each element P (J ). Let us remark that the number
of elements of P (J ) is 3n. This means that the definition of a bi-polar capac-
ity requires a rather huge and unpractical number of parameters. Moreover, the
interpretation of these parameters is not always simple for the DM. Therefore,
the use of the bi-polar Choquet integral in real-world decision making prob-
lems requires some methodology to assist the DM in assessing the preference
parameters (bi-polar capacities). In the following we consider only the 2−order
decomposable capacities, a particular class of bi-polar capacity.

2.4 Defining a manageable and meaningful bi-polar capacity

measure

We define a 2−order decomposable bi-capacity [9] such that for all
(C,D) ∈ P (J )



µ̂(C,D) = µ+(C,D)− µ−(C,D)

where

– µ+(C,D) =
∑

j∈C

a+({j}, ∅) +
∑

{j,k}⊆C

a+({j, k}, ∅) +
∑

j∈C, k∈D

a+({j}, {k})

– µ−(C,D) =
∑

j∈D

a−(∅, {j}) +
∑

{j,k}⊆D

a−(∅, {j, k}) +
∑

j∈D, k∈C

a−({k}, {j})

The interpretation of each a±(.) is the following:

– a+({j}, ∅), represents the power of criterion gj by itself; this value is always
positive.

– a+({j, k}, ∅), represents the interaction between gj and gk, when they are
in favor of the preference of a over b; when its value is zero there is no
interaction; on the contrary, when the value is positive there is a synergy
effect when putting together gj and gk; a negative value means that the two
criteria are redundant.

– a+({j}, {k}), represents the power of criterion gk against criterion gj , when
criterion gj is in favor of a over b and gk is against to the preference of a
over b; this leads always to a reduction or no effect on the value of µ+ since
this value is always non-positive.

An analogous interpretation can be applied to the values a−(∅, {j}), a−(∅, {j, k}),
and a−({k}, {j}).

In what follows, for the sake of simplicity, we will use a+j , a
+
jk, a

+
j|k, instead

of a+({j}, ∅), a+({j, k}, ∅), and, a+({j}, {k}), respectively; and a−j , a
−
jk, a

−
j|k,

instead of a−(∅, {j}), a−(∅, {j, k}), and a−({k}, {j}), respectively, obtaining

µ̂(C,D) = µ+(C,D)−µ−(C,D) =
∑

j∈C

a+j −
∑

j∈D

a−j +
∑

{j,k}⊆C

a+jk−
∑

{j,k}⊆D

a−jk+
∑

j∈C, k∈D

aj|k

where, aj|k = a+
j|k − a−

j|k.

The following conditions should be fulfilled.

Monotonicity conditions

1) µ+(C,D) ≤ µ+(C ∪ {j}, D), ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )

∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D

a+
h|k ≤

∑

h∈C∪{j}

a+h +
∑

{h,k}⊆C∪{j}

a+hk +
∑

h∈C∪{j},k∈D

a+
h|k ⇔

⇔ a+j +
∑

k∈C

a+jk +
∑

k∈D

a+
j|k ≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J )



2) µ+(C,D) ≥ µ+(C,D ∪ {j}), ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D

a+
h|k ≥

∑

h∈C

a+h +
∑

{h,k}⊆C

a+hk +
∑

h∈C,k∈D∪{j}

a+
h|k ⇔

⇔
∑

h∈C

a+
h|j ≤ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J )

The same kind of monotonicity should be satisfied for µ−. Let us call them
Conditions 3) and 4). They are equivalent to the general monotonicity for µ−,
i.e.,

∀ (C,D), (E,F ) ∈ P (J ) such that C ⊇ E, D ⊆ F, µ−(C,D) ≤ µ−(E,F ).

Conditions 1), 2), 3) and 4) together ensure the monotonicity of the bi-capacity,
µ̂, on J , obtained as the difference of µ+ and µ−, that is,

∀ (C,D), (E,F ) ∈ P (J ) such that C ⊇ E, D ⊆ F, µ̂(C,D) ≥ µ̂(E,F ).

Boundary conditions

1. µ+(J , ∅) = 1, i.e.,
∑

j∈J

a+j +
∑

{j,k}⊆J

a+jk = 1

2. µ−(∅,J ) = 1, i.e.,
∑

j∈J

a−j +
∑

{j,k}⊆J

a−jk = 1

2.5 The 2-order bi-polar Choquet integral

The following theorem gives a definition of the bi-polar Choquet integral in terms
of the above 2-order decomposition.

Theorem 2.5 If the bi-capacity µ̂ is 2−order decomposable, then for all x ∈ R
n

ChB(x, µ̂) =
∑

j∈J ,xj>0

a+j xj +
∑

j∈J ,xj<0

a−j xj+

+
∑

j,k∈J ,j 6=k,xj ,xk>0

a+jk min{xk, xj}+
∑

j,k∈J ,j 6=k,xj ,xk<0

a−jk max{xk, xj}+

∑

j,k∈J ,xj>0,xk<0

a+
j|k min{xj ,−xk}+

∑

j,k∈J ,xj>0,xk<0

a−
j|k max{−xj , xk}

Proposition 2.5 If µ̂ is 2-order decomposable then µ̂(C,D) = −µ̂(D,C) for

each (C,D) ∈ P (J ) iff



1. for each j ∈ J , a+j = a−j = aj,

2. for each {j, k} ⊆ J , a+jk = a−jk = ajk,

3. for each j, k ∈ J , j 6= k, a+
j|k = a−

k|j.

2.6 Assessing the preference information

On the basis of the above 2−order decomposition and holding the symmetry
condition in Proposition 2.5, we propose the following methodology which sim-
plifies the assessment of the preference information. We consider the following
information given by the DM and their representation in terms of linear con-
straints:

1. Comparing pairs of actions. The constraints represent some pairwise com-
parisons on a set of training actions. Given two actions a and b, the DM may
prefer a to b, b to a or be indifferent to both:
(a) the linear constraint associated with aPb is ChB(PB(a, b), µ̂) > 0;
(b) the linear constraint associated with aIb is ChB(PB(a, b), µ̂) = 0.

2. Comparison of the intensity of preferences between pairs of actions. This
comparison can be stated as follows:

ChB(PB(a, b), µ̂) > ChB(PB(c, d), µ̂) if (a, b)P(c, d)

where, (a, b)P(c, d) means that the comprehensive preference of a over b is
larger than the comprehensive preference of c over d.

3. Importance of criteria. A partial ranking over the set of criteria J may be
provided by the DM:
(a) criterion gj is more important than criterion gk, which leads to the con-

straint aj > ak;
(b) criterion gj is equally important to criterion gk, which leads to the con-

straint aj = ak.
4. Interaction between pairs of criteria. The DM can provide some information

about interaction between criteria:
(a) if the DM feels that interaction between gj and gk is more important

than the interaction between gp and gq, the constraint should be defined
as follows: ajk > apq;

(b) if the DM feels that interaction between gj and gk is the same of the
interaction between gp and gq, the constraint will be the following: ajk =
apq.

5. The sign of interactions. The DM may be able, for certain cases, to provide
the sign of some interactions. For example, if there is a synergy effect when
criterion gj interacts with criterion gk, the following constraint should be
added to the model: ajk > 0.

6. The power of the opposing criteria. Concerning the power of the opposing
criteria several situations may occur. For example:



(a) when the opposing power of gk is larger than the opposing power of gh,
with respect to gj , which expresses a positive preference, we can define
the following constraint: a+

j|k > a+
j|h;

(b) if the opposing power of gk, expressing negative preferences, is larger
with gj rather than with gh, the constraint will be a+

j|k > a+
h|k.

2.7 A linear programming model

All the constraints presented in the previous section along with the symmetry,
boundary and monotonicity conditions can now be put together and form a
system of linear constraints. Strict inequalities can be converted into weak in-
equalities adding a variable ε. It is well-know that such a system has a feasible
solution if and only if when maximizing ε, its value is strictly positive [15]. Con-
sidering constraints of Proposition 2.5, the linear programming model can be
stated as follows (where jPk means that criterion gj is more important than
criterion gk; the remaining relations have similar interpretation):

Max ε

ChB(PB(a, b), µ̂) ≥ ε if aPb, ChB(PB(a, b), µ̂) = 0 if aIb,

ChB(PB(a, b), µ̂) ≥ ChB(PB(c, d), µ̂) + ε if (a, b)P(c, d), ChB(PB(a, b), µ̂) = ChB(PB(c, d), µ̂) if (a, b)I(c, d),

aj − ak ≥ ε if jPk, aj = ak if jIk,

ajk − apq ≥ ε if {j, k}P{p, q}, ajk = apq if {j, k}I{p, q},

ajk ≥ ε if there is synergy between criteria j and k,

ajk ≤ −ε if there is redundancy between criteria j and k,

ajk = 0 if criteria j and k are not interacting,

Power of the opposing criteria of the type 6:

a+

j|k
− a+

j|p
≥ ε, a−

j|k
− a−

j|p
≥ ε,

a+

j|k
− a+

p|k
≥ ε, a−

j|k
− a−

p|k
≥ ε,

a+

j|k
− a−

j|p
≥ ε,

Symmetry condition (point 3. of Proposition 2.5):

a
+

j|k = a
−
k|j , ∀ j, k ∈ J ,

Boundary and monotonicity constraints:
∑

j∈J

aj +
∑

{j,k}⊆J

ajk = 1,

aj ≥ 0 ∀ j ∈ J , a
+

j|k, a
−
j|k ≤ 0 ∀ j, k ∈ J ,

aj +
∑

k∈C

ajk +
∑

k∈D

a
+

j|k ≥ 0, ∀ j ∈ J , ∀(C ∪ {j}, D) ∈ P (J ),

aj +
∑

k∈D

ajk +
∑

k∈C

a
−
k|j ≥ 0, ∀ j ∈ J , ∀(C,D ∪ {j}) ∈ P (J ).































































































































































































EAR

2.8 Restoring PROMETHEE

The condition which allows to restore PROMETHEE is the following:

1. ∀j, k ∈ J , ajk = a+
j|k = a−

j|k = 0.



If condition 1 is not satisfied and holds

2. ∀j, k ∈ J , a+
j|k = a−

j|k = 0,

then the comprehensive preference of a over b is calculated as the difference
between the Choquet integral of the positive preference and the Choquet integral
of the negative preference, with a common capacity for the positive and the
negative preferences, i.e. there exist a capacity µ : 2J → [0, 1], with µ(∅) = 0,
µ(J ) = 1, and µ(A) ≤ µ(B) for all A ⊆ B ⊆ J , such that

ChB(PB(a, b), µ̂) =

∫ 1

0

µ({j ∈ J : PB
j (a, b) > t})dt−

∫ 1

0

µ({j ∈ J : PB
j (a, b) < −t})dt.

We shall call this type of aggregation of preferences, the Choquet integral PROMETHEE
method.
If neither 1. nor 2. are satisfied, then we have the Bipolar Choquet integral.

2.9 A constructive learning preference information elicitation

process

The previous Conditions 1-2 suggest a proper way to deal with the linear pro-
gramming model in order to assess the interactive bi-polar criteria coefficients.
Indeed, it is very wise to try before to elicit weights concordant with the classic
PROMETHEE method. If this is not possible, one can consider a PROMETHEE
method which aggregates positive and negative preferences using the Choquet
integral. If, by proceeding in this way, we are not able to represent the DM’s pref-
erences, we can take into account a more sophisticated aggregation procedure
by using the bi-polar Choquet integral. This way to progress from the simplest
to the most sophisticated models can be outlined in a four step procedure as
follows,

1. Solve the linear programming model adding the constraint related to the
previous Condition 1. If the model has a feasible solution with ε > 0, the ob-
tained preferential parameters are concordant with the classical PROMETHEE
method. Otherwise,

2. Solve the linear programming model adding Condition 2. If there is a solu-
tion with ε > 0, the information is concordant with the Choquet integral
PROMETHEE method. Otherwise,

3. Solve the problem without any of the Conditions 1-2. A solution with
ε > 0 means that the preferential information is concordant with the bi-polar
Choquet integral PROMETHEE method. Otherwise,

4. We can try to help the DM by providing some information about inconsis-
tent judgments, when it is the case, by using a similar constructive learning
procedure proposed in [16].

In fact, in the linear programming model some of the constraints cannot be
relaxed, that is, the basic properties of the model (symmetry, boundary and



monotonicity constraints). The remaining constraints can lead to an unfeasi-
ble linear system which means that the DM provided inconsistent information
about her/his preferences. The methods proposed in [16] can then be used in
this context, providing to the DM some useful information about inconsistent
judgements.

3 ROR applied to Bipolar PROMETHEE method

In above sections we dealt with the problem of finding a set of measures restor-
ing preference information provided by the DM in case where multiple criteria
evaluations are aggregated by Bipolar PROMETHEE outranking method. In
this context it is meaningful to take into account the Robust Ordinal Regres-
sion (ROR) [12, 6, 1, 11, 10]. ROR is a family of MCDA methodologies recently
developed, taking into account not only one model compatible with preference
information provided by the DM, but the whole set of models compatible with
preference information provided by the DM considering two preference relations:
the weak necessary preference relation, for which alternative a is necessarily
weakly preferred to alternative b if a is at least as good as b for all compatible
models, and the weak possible preference relation, for which alternative a is pos-
sibly weakly preferred to alternative b if a is at least as good as b for at least one
compatible model. In case of bi-polar PROMETHEE method, we can consider
the necessary and the possible preference relations as follows:

– a is weakly possibly preferred to b, and we shall write a %P b, if
ChB(PB(a, b), µ̂) ≥ 0 for at least one bi-capacity µ̂ compatible with the
preference information given by the DM,

– a is weakly necessarily preferred to b, and we shall write a %N b, if
ChB(PB(a, b), µ̂) ≥ 0 for all bi-capacity µ̂ compatible with the preference
information given by the DM.

Given two alternatives a, b ∈ A, the set of constraints EAR

, and considering the
following sets of constraints,

ChB(PB(a, b), µ̂) ≥ 0

EAR

}

EP (a, b),
ChB(PB(b, a), µ̂) ≥ ε

EAR

}

EN (a, b),

the necessary and possible preference relations for the couple (a, b) ∈ A×A, can
be computed as follows:

– a is weakly possibly preferred to b iff EP (a, b) is feasible and ε∗ > 0 where
ε∗ = max ε s.t. EP (a, b),

– a is weakly necessarily preferred to b iff EN (a, b) is infeasible or ε∗ ≤ 0 where
ε∗ = max ε s.t. EN (a, b).



4 Conclusions

The paper dealt with the aggregation of positive and negative preferences by
means of the bipolar PROMETHEE method. ROR methodology has been pro-
posed to derive robust conclusions through the use of the concepts of possible and
necessary preferences. It permits to take into account the whole set of preference
parameters compatible with the preference information given by the DM.
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