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Abstract

We are considering the problem of measuring and analyzing customer satisfaction concerning a
product or a service evaluated on multiple criteria. The proposed methodology generalizes the MUSA
(MUlticriteria Satisfaction Analysis) method. MUSA is a preference disaggregation method that,
following the principle of ordinal regression analysis, finds an additive utility function representing
both the comprehensive satisfaction level of a set of customers and a marginal satisfaction level
with respect to each criterion. Differently from MUSA, the proposed approach, that we will call
MUSA-INT, takes also into account positive and negative interactions among criteria, similarly to
the multicriteria method UTASMS_INT. Our method accepts evaluations on criteria with different
ordinal scales which do not need to be transformed into a unique cardinal scale prior to the analysis.
Moreover, instead of a single utility function, MUSA-INT can also take into account a set of utility
functions representing customers’ satisfaction, adopting the robust ordinal regression methodology.
An illustrative example shows how the proposed methodology can be applied on a customers’ survey.

Keywords: Multiple criteria decision aiding; Customer satisfaction analysis; Utility
function; Interacting criteria; Ordinal scales.
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1 Introduction

Customer satisfaction evaluation plays a key role in the enterprises’ organization, contributing
through discovery and representation of customers’ preferences to the definition of different salient
aspects of companies’ strategies.

Among other advantages, customer satisfaction could increase companies’ competitiveness [35],
identify potential market opportunities, direct new actions to the quality improvement of a product
or a service [32], and could also have a positive effect on brand equity [47].

Several approaches have been already developed to evaluate customer satisfaction (see [32] for a
detailed list of the existing methods). The most used approaches are the statistical ones: the multiple
regression analysis, the discriminant analysis, and the conjoint analysis [26, 28] that nowadays is one
of the most important marketing research tools (see [33] for an overview and recent developments).

In conjoint analysis, customers are asked to evaluate combinations of different values of the
attributes considered for a product or a service. On the basis of customers’ answers, conjoint analysis
aims at identifying the most desirable attribute values to be implemented in a product or a service.

Customer satisfaction analysis has also been approached using dominance-based rough set theory
[19] which aims at inferring some simple decision rules from the consumers’ data [20], differently from
the conjoint analysis which represents customers’ preferences with a comprehensive utility function.

Another interesting approach to customer satisfaction analysis consists in preference learning
(see [12] for an updated state-of-the-art) that, given some preferences on a set of objects, searches a
function to predict the preferences on a new set of objects. For example, some preference learning
applications are provided by a search engine’s ranking of web pages according to customers’ prefer-
ences, or by stores’ rankings of particular products according to the preferences expressed on-line by
the clients.

Customers’ satisfaction evaluation has also been studied from a multiple criteria point of view,
using the method MUSA (MUlticriteria Satisfaction Analysis [30]). MUSA is a preference disag-
gregation method that, following the principle of ordinal regression analysis [37], finds an additive
utility function representing the satisfaction level of a set of customers based on their expressed
preferences collected in a satisfaction survey’s data. Using MUSA, the customers are asked to give a
comprehensive satisfaction level for a service or a product under consideration, but also a marginal
satisfaction level for each one of its features (evaluation criteria). MUSA has many advantages over
the traditional customer satisfaction models, since it fully considers the qualitative form of customers’
judgments and preferences that are usually expressed in this way in the consumers’ questionnaires.
The success of MUSA is witnessed by many applications in different fields as, for example, bank
sector [29], agricultural marketing [46] and transportation-communication sector [31]. Despite these
positive aspects, MUSA is not able to represent positive and negative synergies between specific
features of a product or a service, since it considers an additive utility function and, consequently,
its underlying hypothesis is preference independence [39, 51].

This is an important issue because it is a common experience that in the evaluation of a product
or a service, some features could positively or negatively interact. For example, in the evaluation
of a supermarket, prices and special offers have, usually, a negative interaction. In fact, prices and
special offers are both important in evaluating a supermarket, however, a supermarket with low
prices has also often many special offers and thus, considering together prices and special offers, the
total importance is smaller than the sum of their marginal importances. Analogously, one can say
that there is a positive synergy between goods’ quality and prices, because in general a supermarket
with high quality of goods has also high prices and thus a supermarket with a high quality of goods
and relatively low prices is well appreciated, such that the total importance of goods’ quality and
prices considered together is higher than the sum of the importance of their marginal importances.

In Multiple Criteria Decision Aiding (MCDA, see [9] for an updated state-of-the-art) positive and



negative interaction among criteria are very often represented using some fuzzy integrals, such as the
Choquet integral [5] or some of its generalizations, e.g., the bipolar Choquet integral ([14, 15]; see
also [21]) or the level dependent Choquet integral [18], (see [16] for a survey about the use of Choquet
integral in MCDA). Fuzzy integrals, and among them the Choquet integral, are aggregation models
that, besides other technical assumptions, require a scale of measurement which is cardinal (more
precisely, an interval scale [45]) and common to all the criteria (features) taken into consideration.
Such a scale permits comparison of evaluations on different criteria, so that, e.g., it becomes possible
to say that, for a given supermarket, the level of prices is better than the special offers it proposes
and, moreover, these are better than the quality of the goods.

Even if the majority of conjoint analysis methods does not consider interaction among attributes
[4], there are several contributions, like [1, 13, 27, 34, 40, 42, 44|, that estimate by means of a
statistical regression not only a value for each level of each attribute, but also a value for each
combination of levels on a set of couples of attributes (possibly all couples of attributes). Another
approach proposed to represent interaction among attributes in conjoint analysis is based on the use
of the Choquet integral [48, 36, 41, 49, 50, 52].

Since we want to take into account not more than ordinal qualitative aspects of the scales of
criteria, we propose MUSA-INT, being a generalization of the multicriteria method MUSA. MUSA-
INT handles positive and negative synergies between couples of criteria, using a formulation of the
utility function recently proposed in the multicriteria method UTASMSINT [24]. Differently from
the 2-additive Choquet integral aggregation model, UTA®MS_INT represents positive and negative
synergies avoiding any arbitrary transformation of the original ordinal scales into a unique artificial
cardinal scale.

The paper is organized as follows. In Section 2, we introduce the basic concepts and the relative
notation, a brief description of the MUSA method, and the specific utility function adopted in
our customer satisfaction model. In Section 3, basic steps of the proposed multicriteria customer
satisfaction analysis are described. Some further extensions of the proposed method are presented
in Section 4. Section 5 contains an illustrative example, considering a set of customers’ satisfaction
questionnaires on which MUSA-INT is applied. Conclusions and future directions of research are
collected in Section 6.

2 Basic concepts and the MUSA method

The basic elements of the proposed methodology are the following:

e C'={1,...,r} is the set of customers,

o [ ={1,...,n} is the set of evaluation criteria (features),

o Li={0 ... ,Eii},i =1,...,n, is the set of levels of satisfaction for criterion ¢: for example, for
a given criterion i, the scale could be £ = {¢}, ¢}, ¢4}, with ¢} =*“dissatisfied”, ¢, =“satisfied”,
0y =“very satisfied”; the levels £}, ... ,Eii are increasingly ordered with respect to the satisfac-
tion level, i.e. the satisfaction represented by E; is greater than the satisfaction represented by
‘6;')7171) - 27 -5 Si,

o LTl = (it , 02! }is the set of levels of comprehensive satisfaction: the levels A N

are increasingly ordered with respect to the satisfaction level,
e sat.; € L' is the satisfaction expressed by customer ¢ € C' with respect to criterion ¢ € I,

® salept1 € L1 is the comprehensive satisfaction expressed by the customer ¢ € C,



e u;: L' — [0,1] is the marginal utility function of criterion i,
o U: L1 —0,1] is the utility of comprehensive levels of satisfaction,

o Synt C I® with I®® = {{iy,iy} C I} is the set of all couples of criteria for which there is a
positive interaction,

e Syn~— C I? is the set of all couples of criteria for which there is a negative interaction,

° Syn+ L x LI — [0, p| is a function non-decreasing in both its two arguments representing the
strength of the positive interaction between criteria 4,j € I, such that {i,j} € Syn™ (p is a
positive real constant),

o syn;; : LY x L7 — [0,p] is a function non-decreasing in both its two arguments representing
the strength of the negative interaction between criteria 7,5 € I, such that {i,j} € Syn~ (as
above, p is a positive real constant).

In the MUSA method [30], inspired by the idea of ordinal regression used in the UTA methods
[37], one represents customer satisfaction through the following additive utility function,

U(satepi1) = Zui(satm), ceC. (1)

=1

The utility function (1) is obtained by solving the following LP problem [30]:

Minimize: Z(UZ’ +o0,), s.t. (2)

c=1

U(satent1) Z ui(sat.;) — ol +o., forallce C

of >0,0, >0 forallcEC’
wi(0) > ui(€ ), p=2,...,s;, foralliel,

UG 2 U@, p=2,... 5w
u;(¢1) =0, foralli € I,

} (monotonicity conditions)

Z w(0L) =1, (normalization constraints)

U(£"+1 ) — 1’

\ Sn+1

where o and o are over- and under-estimation errors for every customer’s utility function.

Differently from MUSA, the utility function considered in our model is the one proposed in
the multicriteria method UTAYMSINT (see [24]), which takes into account positive and negative
interactions between couples of criteria as follows:

U(sateni1) ZUZ sate;) + Z syn;; F(sate;, sat. ;) — Z syn; (sate;, sat.;), c€ C. (3)

{i.j}eSyn*t {i.j}eSyn=



3 Description of MUSA-INT

In this section, we present a new procedure for finding a utility function representing the compre-
hensive satisfaction of a set of customers C. The adopted utility function defined by (3) handles
synergies between satisfaction levels on two criteria, ¢ and j: sat.; and sat. ;.

The multicriteria customer satisfaction analysis we are proposing is composed of three main
successive phases:

(i) finding a utility function U representing the satisfaction of all customers from set C' with a
minimal sum of approximation errors;

(i) identifying a minimal set of couples of interacting criteria, where minimality is referred to the
inclusion;

(iii) finding a utility function discriminating as much as possible satisfaction levels for both marginal
and comprehensive utility functions.

From a computational point of view, each phase consists in solving a specific mixed integer linear
program (MILP). Let us examine each phase in detail.

3.1 Phase (i): finding a utility function representing the satisfaction of
all the customers

Since we want to get a utility function U representing the utility of all customers from set C' with a
minimal sum of approximation errors, we need to introduce non-negative error variables o, o, > 0,
corresponding to over- and under-estimation, respectively, for every customer’s utility as follows:

U(sateni1) Zuz sate;)+ Z syn;; T(sate;, satej) — Z syn;; (sate, sate;)—or +o., (4)
{i.4}el® {1.7}€1®

for all c € C.
The objective function to be minimized is the sum of the error variables over all customers from set

C' (analogically to the original UTASTAR method [37)):

r

> (0f +0.). (5)

c=1

In the same spirit of what was done in UTAYMS_INT [24], we consider the following options for
the positive and negative interactions present in the value function (4) for each couple of criteria

{i,j} €1®

(S1) synj(sat.;, sat. ;) and syn; (satc, sat ;) are not mutually exclusive, such that in the evaluation
space of the two criteria there is a switch between positive interaction and negative interaction;
in some parts of the space the positive interaction prevails and in some others a negative
interaction prevails, or even, there is no interaction,

(S2) syn;; F(sat.;, sat. ;) and syn;; (sat.;, sat. ;) are mutually exclusive,

(S3) only one of the two interactions is considered, for example the positive one.



According to [24], in order to ensure the monotonicity of the utility function, we consider for all
J C I the following constraint: if sat.; > saty;, for all i € J, and ¢,d € C, then

Zui(satcvi)qL Z syn;(satc,i,satcvj)— Z syn;;(sate, sate;) >

> Z ui(satq;) + Z syn;f(sata, satq;) — Z syn;;(sata, satq ;).
ieJ {i.g3cJ {i.gycy

Someone could object that constraint (6) could be obtained more easily by imposing the same

constraint only for all couples of criteria {i,j} € I®. This is not true, because it is possible that
constraint (6) is verified for each couple of criteria {4,7} € I®), but the same constraint is not true
for a subset of criteria J C I, |J| > 2, for which sat.; > saty; for all i € J, and ¢,d € C.
Because constraints described by inequality (6) are numerous, and we would like to consider as simple
model as possible, i.e. with the lowest possible number of interactions, we shall suppose, that each
criterion ¢ can interact with at most one another criterion. Under this assumption, constraint (6)
has to be considered only for each J C I, where |J| = 2.

In case of option (S1), for each couple of criteria {i, j} € I?, the following binary variable Vij s
introduced:

[ 1 if {i,j} € I® are interacting,
CA { 0 if {i,j} € I® are not interacting.

Thus, the following constraints are considered in the first MILP problem:

( 7vi; €{0,1}

ST < 1 forallield,
Esny § deny (7)
syn;; (@i ) @j ) < Vi

where, as said before, p is an upper bound for syn;; and syn,;, e.g. equal to 1, and the second
constraint ensures that each criterion can interact with at most one another criterion.

In case of option (S2), we introduce as many binary variables (5%, d;; € {0, 1} as twice the couples
n

2). The meaning of every binary variable is the following:

of criteria, i.e. 2 X (

1 if {4,7} € I® are positively (negatively) interacting,
0 if {i,j} € I® are not positively (negatively) interacting.

055(05;) = {

For every couple of criteria {i, j} € I, three situations can arise:
1) 4 and j are interacting positively (d;; = 1),
2) i and j are interacting negatively (J;; = 1),

3) i and j are not interacting ((5:; =0, = 0).

In consequence, the following constraints are included in the first MILP problem:



(01,0, €{0,1}
+ — . .
8+ 05 < 1, forall {i,j} € 1%,
Es) —(0i 4 < o ®)
Synl_]( 857 Sj) — p ij)
Z (05 +6;) < 1foralliel,
| enga

where p can be set, e.g. equal to 1; the second constraint avoids that there could be positive and
negative interactions for the same couple of criteria and the last constraint ensures that each criterion
can interact with at most another criterion only.

In order to simplify the notation, we shall describe the set of constraints of option (S3) starting from
set of constraints of the option (S2):

e if we consider only positive interactions, then the corresponding set of constraints Fgs+) is
obtained from E(gg) by adding d;; = 0 for all {i,j} € 1),

e if we consider only negative interactions, then the corresponding set of constraints Eg3-y is
obtained from FE(gz) by adding d;; = 0 for all {5} € I,

Finally, the MILP formulation includes some technical constraints concerning monotonicity and
boundary conditions on the synergies, marginal utilities and comprehensive utility. In particular,
monotonicity constraints ensure that the marginal utility uz-(l;) foralli=1,...,n,andp=1,...,s;,
and the comprehensive utility U (l;j“), p=1,...,8,11, are non-decreasing functions of l; and l;}“,
respectively, while interaction functions synj (I .17 ), syn; (I’ ;17 ) are non-decreasing functions of
both their two arguments I} , 17 , for all {i,j} € I®, p; =1,....s;, and ¢ = 1,...,s;. Boundary
conditions ensure, instead, that U(c) € [0, 1] for each ¢ € C, imposing that the utility of the profile
presenting the worst satisfaction on each criterion is equal to zero, while the utility of the profile
presenting the best satisfaction on each criterion is equal to one.

In consequence, the set of constraints common to all the options described before is the following;:



)

U(sateni1) Z wi(sat.;) + Z syny;(sate, sate;) — Z syng; (sate,, sate;) — of + o,
{ighel® {i.}yer®
for all c € C,

wi(0) > ui(€, ), p=2,...,s;, foralliel, )
uptt) > U(E”H) +e, p=2,..., 841,
syny; (6, €1 ) > synf (6, 6.),

p1’ T q1 P27 7q2
syng; (€, €1 ) > syn;; (6, 0,),
u@.(g;l)._,_ wi(63) +synf (6,03 ) —syn; (6 0 ) > (monotonicity conditions), [
> u;(£,) +u(€,) +syn; (6, 6,) — syni (£, 6,),

with D1 Zpg and q1 Zq27
p17p2:]-7"'7si7 q17q2:17"'78j7 fOI' a’u {7'7]}6‘[(2)7

u;(01) =0, for all i € I,U(}T) =0, )
syn; (6 6)=0 , 8yny; L0, 6) =0, for all {i,j} eI

Zuz () + Z syn; (£, SJ) Z syn;; (6;,@])—

{i,j}eI® {i,jyel® J

(boundary condition),

where ¢ is an arbitrarily small positive quantity.

Depending on the choice of the option (S1), or (S2) or (S3), we set (E,) = E, U E(,, where
E(y is one of the sets of constraints: Es1), E(s2), E(53+), and E(S3f), previously defined. Some
computational details on the set of constraints (F;) are presented in the Appendix.

It is important to pay attention to the selected value of € since it may affect the feasibility of (E})
or the provided solution. For this reason, it is recommended to use different values of £ and select
the one giving the minimum approximation error. The analyst should assist the selection of e.

In order to check the existence of a utility function representing the satisfaction of all customers
from set C', we have to solve the following MILP problem:

Minimize: Z(azr +o0,), s.t. 9)

c=1

(E1).

In real-word applications it is rather difficult to minimize the objective function to zero. For this
reason, the analyst should fix the maximum acceptable error, called maxerror.

The above mixed-integer linear program returns the utility function U and, moreover, for option
(S1) the set Syn of couples of criteria that can interact positively and negatively, and for options
(S2) and (S3), the sets Syn™ and Syn~ of couples of positively and negatively interacting criteria,
defined, respectively, as follows:

Syn = {{27]} € [(2) P Yig = 1}7

Synt = {{i,j} € I®: 5} =1}, Syn~ = {{i,j} € I? : 5, = 1}.



Let us remark that if program (9) gives ;; = 0 for option (S1), or 5;; =0,; =0, for all {i,j} € I®
for options (S2) and (S3), i.e. when there are no interactions, the obtained utility function is
the same as the one supplied by the MUSA method [30]. For this reason, MUSA-INT is a true
generalization of MUSA.

If the objective function of program (9) can be minimized to zero, then there exists at least one
utility function U, having the form of (3), representing the satisfaction of customers expressed by
set of constraints (Ej); otherwise, if the minimum value of objective function of (9) is positive, then
there is no utility function U, having the form of (3), able to represent satisfaction of customers
expressed by set of constraints (E).

,
In the latter case, let opterr be the optimal value of the objective function Z(Jj + 0, ) resulting
c=1
from (9). Two situations can arise:

o If opterr < maxerror, that is the error obtained in the previous phase is acceptable for the
analyst, then one can pass to phase (ii) described in Section 3.2.

o If opterr > maxerror, then one can increase the maximum number of criteria with which
each criterion can interact, until problem (9) gives a solution with opterr < mazerror. Let us
suppose that each criterion can interact with at most a fixed number of criteria denoted by 7.
In this case, we need to add the following constraints to (E,):

Sowl)+ Y synf(ULE )= > syng (L ) >

€J . {ijreJ o {igycJ o (10)
> uilly) + D synfl ) = Y syl 1),
= {i.grcs {i.73cJ

if p; >q;, forallie J:|J|=n+Tland p;=1,...,8, ¢g=1,---,s;.
Moreover, constraints

Z Yij S 1forallz el in (E(Sl))7
JE\{i}
and

5;; +0d; <lforalli€lin (E(s2)),

JEI\{i}
should be, respectively, replaced by

Z Yij <1
JEI\{i}
and

+ —

JE\{i}

3.2 Phase (ii): identifying of a minimal set of couples of interacting
criteria
The set Syn of couples of criteria that can interact positively and negatively, or the pair (Syn™, Syn™)

of sets of couples of interacting criteria, obtained in phase (i), is not necessarily minimal, in the sense
that there could exist other sets Syn’ or Syn't and Syn'~ of couples of positively or negatively



interacting criteria that could represent the utility of all customers with the same or similar ap-

proximation error Z(oj + 0.), and such that Syn’ C Syn for option (S1) or Syn'™ C Syn™ and
c=1
Syn'~ C Syn~ for options (S2) and (S3), with at least one of the two inclusions being strict.
In order to identify a minimal set Syn or a minimal pair (Syn™, Syn~) of sets of couples of
interacting criteria, while possibly accepting a small deterioration of the approximation error resulting
from the previous phase, we have to solve the following MILP problem

Minimize: f, s.t. (11)
(E1)7
Z(azr + 0. ) < opterr + a, (£2)
c=1
where f = v;; for option (S1) or f = 5+ +0:7) for options (S2), (S3), opterr is the
J 1) %]
{i.jtel® {i.jtel®

r

optimal value of the total approximation error Z(Jj + o, ) resulting from the solution of (9), and

c=1
0 < a < maxerror — opterr is a tolerance parameter controlling the possible deterioration of the

total optimal approximation error.

The parameter o controls the trade-off between the number of criteria interacting and the total
approximation error of the utility function. The analyst can tune a depending on his/her acceptance
of the number of interacting criteria. In fact, s(he) could be interested in working with a small number
of interacting criteria, giving up to a utility function more adequate to the customers’ survey. Such
analyst’s attitude can be justified by the fact that it is easier to improve the customer satisfaction
by focusing on a smaller number of interacting criteria.

In result of solving MILP problem (11), one gets a utility function U (possibly different from
the utility function resulting from (9)) and depending, on the option (S1), (S2), or (S3), Syn
or a minimal pair (Syn™, Syn~) of sets of couples of positively and negatively interacting criteria,
minimal in the sense of inclusion.

3.3 Phase (iii): finding the most discriminating utility function

In order to find a utility function U (possibly different from the one obtained in the previous phase)
discriminating as much as possible all levels of satisfaction by the marginal utility functions w;(-),
or by the comprehensive utility function U(-), while keeping the same number of interacting couples
of criteria, as obtained from (11), one has to solve two MILP problems. The first one tends to
discriminate as much as possible the satisfaction levels of the comprehensive utility function:

Maximize: € = €comprehensive, S-t- (12)
<E2)7 )
Z vi; < optsyn, for (S1),
{i.jyel® (E3)
Z (6,5 4 0;;) < optsyn, for (S2) and (S3)
{i.j}yel®




where ¢ is a variable present in the constraint U(¢}]) > U({2™) + €, opterr and « have the same
meaning as in program (11), while optsyn is the optimal value of the objective function of program
(11).

The solution of MILP problem (12) gives a utility function maximizing the minimal difference
U (E;‘“) -U (EZjll), p=2,...,5,41. In fact, the minimum of those differences is equal to €comprenensives
i.e the optimal value of ¢ given by program (12).

The analyst could be interested in finding the most discriminating function not only with respect
to the comprehensive utility, but also with respect to the marginal utilities. In order to find such
discriminating marginal utility functions, one has to solve the following MILP problem:

Maximize: € = €marginal, S-t- (13)
/ )
<E2)7
Z Vi < optsyn, for (S1),
{i.j}el® (£5)
Z (6,5 4 0;;) < optsyn, for (S2) and (S3)
{i,jyel®

Vs

where (E,) is composed of the same constraints as (E,), apart from constraints

o u(6) >wui(lh 1), p=2,...,8; foralli eI,

o« U@ 2 U@ 2, p=2,... 5011,

that are replaced by
o u(6) > () +e, p=2,...,5;, foralliel,

o U(E;)LJrl) 2 U(ggjll) + 5comp7“ehensive X (1 - 6)7 P = 27 <oy Snt,

with 5 € [0, 1] representing the percentage of the comprehensive discrimination threshold that the
analyst is ready to lose in order to gain on discrimination with respect to the marginal utilities.

Even in this case, the parameter § can be tuned with the aim of increasing the discrimination
with respect to the marginal utilities, since the analyst could wish to focus on the marginal utilities,
instead of the comprehensive utility. Consequently, the analyst could direct his/her actions to the
marginal features (criteria) to improve the customer satisfaction.

Let us observe that the sequence of the resolution of the two problems (12) and (13) is not the
only possible. One could also decide to maximize first the marginal utility and then the global utility,
or maximize both types of utilities at the same time.

In some cases, in order to find a discriminating utility function, both with respect to the com-
prehensive and the marginal satisfaction levels, it may be necessary to increase the admissible total
approximation error or increase the number of interacting couples of criteria. In this case, one needs
to solve again the two optimization problems (12) and (13), increasing the chosen value of v in (E»)

or substituting the constraints Z Vi < optsyn for option (S1) or Z (6:; + 6;) < optsyn

{ijrel® {ij}er®
for options (S2) and (S3), with Z vij < (optsyn + ) and Z (6,5 +6;;) < (optsyn + ),
{ijrer® {igyel®

respectively, where v represents the number of additional interactions accepted by the analyst.
In Section 4, we shall describe how to identify alternative minimal sets Syn or pairs (Syn™t, Syn™)
of sets of couples of interacting criteria being compatible with a fixed tolerance parameter «.. In case

10



of multiple minimal sets Syn for option (S1) or pairs (Syn™, Syn~) for options (S2) and (S3), it is
interesting to compute the intersection of all the sets Syn, Syn™ and of all the sets Syn~, without
deteriorating the approximation error. Let us observe that this interpretation of alternative minimal
sets Syn or minimal pairs (Syn™, Syn~) is analogous to the concept of reducts in rough set theory
[43]. Moreover, the intersection of all the sets Syn, Syn™, and of all the sets Syn~, is analogous to
the concept of core in rough set theory [43].

4 Further extensions

The three-phase method described above can be considered a standard procedure; first, we check the
existence of a utility function of type (3) compatible with the customers’ answers (phase (i)), then we
look for a minimal set of couples of interacting criteria (phase (ii)), and finally we look for a utility
function having the maximum discrimination power (phase (iii)). In this section, some interesting
extensions of this procedure are presented.

4.1 Finding other minimal sets of couples of interacting criteria

In general, there may exist more than one minimal set Syn or minimal pair (Syn™, Syn~) and, for
this reason, it could be interesting to find them all.

In case of option (S1), in order to find another minimal set Syny, one has to solve the following
optimization problem:

Minimize: Z Yijs S-t. (14)
{i,j}e1®
(EQ)a
Z vij < [Syni| — 1p (Es)
{i,7}€Syn1

where Syn; is the set of interacting criteria found in phase (ii). The last constraint in (E)y,) ensures
that a newly set of indices of couples of interacting criteria is different from the previous one.

Let us suppose that at the (k — 1) iteration we found the minimal set Syn,_;. In order to
check if there exists another minimal set Syny, it will be sufficient to solve the following optimization
problem:

Minimize: Z Yijs S-t. (15)
{i.7}el®

(E2)7 )

Z Yij < [Syna| — 1,

Z Vi < |Syna| — 1, (Ea)

{i,j}€Syna

Yo v S Symea] -1

{i,j}€Synk—1 )

If problem (15) is infeasible, then there is no minimal set Syny, so that the set M of all minimal sets
Syn is given by
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M = {Syny, -, Synr_1}.

If, instead, problem (15) is feasible, then Syny is a new minimal pair with

Syny = {{i,j} € I®: ~,; =1 in the solution of problem (15)}

In case of options (S2) and (S3), in order to find another minimal pair (Syng, Syn; ), one has to
solve the following optimization problem:

Minimize: Z (5;; + 5;) , s.t. (16)
{i,j}eI®
(EQ)v
Z (045 4 0;;) < |Syni USynT| — 15 (Eag,)

{i,j}E{SynTUSynl_}
where Syn] and Syn are the sets of couples of positively and negatively interacting criteria found
in phase (ii).
Let us suppose that at the (k — 1)™ iteration we found the minimal pair (Syn} |, Syn; ;). In
order to check if there exists another minimal pair (Syn}, Syn; ), it will be sufficient to solve the
following optimization problem:

Minimize: Z (5;; + 5;) , s.t. (17)
{i,j}eI®
(E2)7 )
Yoo (G540 <|Synf USyni| -1,
{i,j}e{SynfUSyn;}
> (65 +05) < |Syng U Syny | — 1,

{i,j}E{Syn;USyng}

Z (5:5 + 5;) < |SZ/”Z—1 U Syny_4| —1

{i.jye{Syni_ USyn;_ } J

If problem (17) is infeasible, then there is no minimal pair (Syn;, Syn; ), so that the set M of all
minimal pairs (Syn™, Syn~) is given by

M = {(Synf,Synf), a(Synz_pSyn;;_l)}-

If, instead, problem (17) is feasible, then (Syn;, Syn; ) is a new minimal pair with
Syn;; = {{i,j} € I¥: 6;; = 1 in the solution of problem (17)}
and

Syn;, = {{i,j} Nk 513 = 1 in the solution of problem (17)} )
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4.2 Customer satisfaction evaluation using a set of compatible prefer-
ence models

When analyzing the customers’ survey presented in Table 1, the experts of the company could be
interested to know what action should be made in order to improve the customer satisfaction of
the service or product provided. For example, let us consider a service evaluated on three criteria,
purchase process, product and additional service, expressed on three different levels of satisfaction:
Dissatisfied, Satisfied and Very Satisfied. The experts could be interested in answering the following
question: “is the profile of customer satisfaction P; = (Satisfied, Very Satisfied, Satisfied) appreci-
ated more than the profile of customer satisfaction P, = (Very Satisfied, Satisfied, Very Satisfied)?”
To answer this question, the experts have to consider the set U of utility functions of type (3) satis-
fying the set of constraints (E7) related to the considered customers’ survey. Such utility functions
are called compatible with customers’ preferences. Then, a natural question arises whether profile
P, is at least as good as profile P, for at least one or for all compatible utility functions from .
By answering this type of questions, the experts can get an additional insight into more meaningful
decision investments concerning the service or product provided by the company. For example, if the
experts find that profile P; is better than profile P, for all compatible utility functions from U, they
can conclude that an action directed to increase satisfaction level from Satisfied to Very Satisfied
on ‘purchase process’ is likewisely more appreciated by the customers than another action directed
to an analogous improvement on both ‘product’ and ‘additional service’. To perform this type of
analysis, one can use the Robust Ordinal Regression (ROR) methodology being a family of MCDA
methods introduced in [22] (for a recent survey on the topic see [25]). ROR has been applied to
ranking problems (see UTA“MS[22] GRIP [11]), to sorting problems (see UTADIS“MS [23]), and
also in methods using outranking relations (ELECTRE®XMS [17]) or Choquet integral (NAROR [3])
as preference models.

Given an initial set of preference information provided by a Decision Maker (DM), the ROR aims
at obtaining a final recommendation for the decision problem at hand, taking into account not only
one preference model compatible with this preference information, but the whole set of compatible
preference models simultaneously. In fact, as it is often the case in the inference procedures, several
decision models could be compatible with the information provided by the DM, but each one of them
could lead to different preferences on the remaining alternatives, not considered by the DM at the
stage of expressing the preference information. The choice of one particular preference model among
all compatible ones could be considered arbitrary, and so it is more meaningful to take into account
the whole set of compatible preference models simultaneously. Supposing the preference model in
the form of a set of compatible utility functions, the conclusions drawn by ROR are based on two
preference relations:

e the necessary preference relation for which alternative a is necessarily preferred to alternative
b, if a is at least as good as b for all utility functions compatible with the preference information
provided by the DM,

e the possible preference relation for which alternative a is possibly preferred to alternative b
if a is at least as good as b for at least one utility function compatible with the preference
information provided by the DM.

In the following, we adapt the concept of ROR to MUSA-INT considering the following binary
relations on the set of profiles £ =[]}, £;. Given any two profiles, P, P, € L:

e profile of customer satisfaction P, is possibly preferred to profile Py, (P, =¥ P), if profile P,

~Y

is at least as good as profile P, for at least one compatible utility function of U,
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e profile of customer satisfaction Py is necessarily preferred to profile P, (P, =V B,), if profile
P, is at least as good as profile P, for all compatible utility functions of U.

Let us stress that in our context, there is no DM but only an analyst supporting the experts of the
company in the analysis of customer satisfaction; for this reason the preference information provided
by the DM in the ROR context is replaced by the answers to the customers’ survey (expressed by
set of constraints (F,)) in our method.

Analogously, the concept of compatible utility function in this context is slightly different from the
one used in ROR. Here, we call compatible a utility function obtained for an approximation error lower
or equal to maxerror, while in the classical ROR methods, a preference model is called compatible
with the preference information provided by the DM when it can represent this information without

any error.
In order to compute the necessary and possible preference relations between two profiles of cus-
tomer satisfaction (sat, 1, satys, ..., sat,,) and (satyq,saty s, . .., saty,,), one should proceed in the

following way.

Considering the sets of constraints,

n )
Zui(satm) + Z syn;;(saty;, saty ;) — Z syn;;(saty;, saty ;) >
i=1 {i,jyer® {i.j}el®
+ —
> Z ui(sat,;) + Z syn;(sata, satq ;) — Z syng;(sata, satq ;) + €, EY(a,b)
i=1 {i,j}eI1® {i.j}yel®
(E1)7
Z (Uj + Uc_) < maxerror,
ceC Y,
and

\

n

Zui(satavi) + Z syn?}(satavi, satq ;) — Z syn;;(sata, satq ;) >

i=1 {ij}el® {i.g}el®
n

> Zui(satb,i) + Z syn;;(satbm saty ;) — Z syn;;(satyi, saty ;), E (a,b)
=1 {i.}el® {i.jter®

(E1>7

Z (O’:r + O';) < maxerror,

ceC Y,

where maxerror is the maximum accepted total approximation error, and ¢ in the constraint
U(rt) > U(24]) + £ is an auxiliary variable, one can conclude the following:

e profile (sat,y,satys,...,sat,,) is necessarily preferred to profile (satyi,satys, ..., saty,) if
EN(a,b) is infeasible or ¢ < 0, where ¥ = max ¢, subject to EV(a,b),

e profile (sat, 1, sal,s,. .., satyy,) is possibly preferred to profile (saty 1, satys, . . ., saty,,) if E¥(a,b)
is feasible and e > 0, where e’ = max ¢, subject to E¥ (a,b).

Analogous conclusions can be drawn using a set of approximately compatible utility functions.
Then, one has to consider the following two sets of constraints:
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Zui(satw) + Z syn;;(saty;, saty ;) — Z syny;(saty;, saty ;) +of — oy >
i=1

{i,j}eI1® {i,j}eI®
> Z ui(sat,;) + Z syn;;(sata,,;, sata ;) — Z syni_j(satm, saty ;) + 04 — oy +¢,
i=1 {i,j}eI® {i,j}eI® N
(EL), By (a,b)
Z (azr + ag) < maxerror,

ceC
O-f_ +01_ S Optlv

oy + 0y < opty

and
n )
Z wi(sat,;) + Z syn;;(sata’i, sat, ;) — Z syn;;(sata, satq ;) + of —o; >
=1 {i,jyel® {i,jyel®
n
> Z ui(saty;) + Z syn;;(saty;, saty, ;) — Z syng;(saty;, saty ;) + 05 — 03,
i=1 {i,j} eI {i.j}yel® p
<E1)7 El (a’ b)
Z (aj + CTC_) < mazxerror,
ceC
o) +oy < opty,
0; + o0, < opts,

Vs

where o, 0y, 05, and o, are, error variables of the utility values relative to profiles a and b, while
opt1 and opty represent the maximum accepted errors in each one of the considered profile’s utility.

Since the new set of constraints, E{"(a,b) and E¥ (a,b), enlarge the decision space of the utility
functions compatible with the customers’ preferences, the following two preference relations, analo-
gous to the ones introduced above, are defined:

e a strong necessary preference relation, for which a is strongly necessarily preferred to b if a
is at least as good as b for all utility functions approximately compatible with the customers’
preferences,

e a weak possible preference relation, for which a is weakly possibly preferred to b if a is at least
as good as b for at least one utility function approximately compatible with the customers’
preferences.

Let us remark that we have considered two different qualifications (strong and weak) for the
necessary and possible preference representation. In fact, since taking into account the error variables
enlarges the set of compatible utility functions, if a is at least as good as b with respect to all
approximately compatible utility functions, then a is strongly necessarily preferred to b. On the
contrary, if a is not at least as good as b for any compatible model in case error variables are
considered, then even considering utility functions admitting some error, we cannot find any utility
function for which a is at least as good as b.
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5 Illustrative example

We shall illustrate MUSA-INT using an example originally considered by Grigoroudis and Siskos [30],
concerning 20 customers evaluating a service provided by an enterprise. In order to show the full
potential of our method, we have augmented the customer dataset presented in [30] by 4 customers,
denoted by x,y,w, and z. The main features of our illustrative example are listed hereafter:

1) evaluation of the service involves three criteria concerning: product (1), purchase process (2) and
additional service (3);

2) three levels of satisfaction (Very Satisfied (V), Satisfied (S), Dissatisfied (D)) are considered with
respect to both, every criterion and comprehensive satisfaction of the service;

3) the customer’s satisfaction survey is composed of answers provided by 24 customers and displayed
in Table 1.

In the following, we will play the role of the analyst supporting the customer satisfaction expert.

Table 1: Consumers’ satisfaction survey

[ Customer | Comprehensive satisfaction | Product (1) | Purchase process (2) | Additional service (3) |
1 Satisfied Very Satisfied Satisfied Dissatisfied
2 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
3 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
4 Satisfied Very Satisfied Dissatisfied Satisfied
5 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
6 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
7 Satisfied Very Satisfied Dissatisfied Very Satisfied
8 Satisfied Very Satisfied Dissatisfied Very Satisfied
9 Satisfied Satisfied Satisfied Satisfied
10 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
11 Satisfied Satisfied Very Satisfied Dissatisfied
12 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
13 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
14 Satisfied Satisfied Very Satisfied Dissatisfied
15 Dissatisfied Dissatisfied Dissatisfied Dissatisfied
16 Very Satisfied Very Satisfied Very Satisfied Satisfied
17 Very Satisfied Very Satisfied Very Satisfied Very Satisfied
18 Very Satisfied Very Satisfied Very Satisfied Satisfied
19 Satisfied Satisfied Satisfied Satisfied
20 Dissatisfied Satisfied Dissatisfied Dissatisfied
x Very Satisfied Satisfied Very Satisfied Satisfied
y Satisfied Satisfied Satisfied Very Satisfied
w Dissatisfied Dissatisfied Very Satisfied Satisfied
Z Satisfied Dissatisfied Satisfied Very Satisfied

For customers x,y,w, and z, it is easy to show that the axiom of the preferential independence
is violated [39].

Supposing that the utility function of all the customers has an additive form and does not handle
synergies between criteria, we can observe the following:

1) since customers x and y have the same levels of satisfaction with respect to criterion ‘product’,
and the comprehensive satisfaction level of x is greater than the comprehensive satisfaction
level of y, we get:

ur () + u2(2) + us(x) > ur(y) + ua(y) + usy) = ua(z) +us(x) > ua(y) + us(y);

2) since customers w and z have the same levels of satisfaction with respect to criterion ‘product’,
and the comprehensive satisfaction level of w is lower than the comprehensive satisfaction level
of z, we get:

uy(w) + ug(w) + ug(w) < uy(z) + uz(z) + us(2) = uz(w) + us(w) < ua(z) + uz(2);
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3) since customers x and w have the same levels of satisfaction with respect to criteria ‘purchase
process’ and ‘additional service’, and customers y and z have the same levels of satisfaction
with respect to criteria ‘purchase process’ and ‘additional service’, we obtain:

uz () + uz(x) = up(w) +ug(w) and uz(y) + us(y) = ua(z) + us(2).

From 1), 2) and 3) we get a contradiction since at the same time it should be true that us(x)+uz(x) >
uz(y) + us(y) and uz(x) + us(x) < uz(y) + us(y).

As a result, we conclude that the customers’ comprehensive satisfaction cannot be represented
by an additive utility function, and thus, the MUSA method using this type of utility function is not
able to fully represent the comprehensive satisfaction of the customers shown in Table 1.

For this reason, to represent the customers’ comprehensive satisfaction shown in Table 1, we
apply MUSA-INT, adopting a utility function with positive and negative synergy components (3).
In the following we shall consider option (S1) only, that is the case where there could exist both
positive and negative interactions for the same couple of criteria. The computations for the other
two options ((S2) and (S3)) can be done analogously.

As described in phase (i), we would like to consider the simplest possible utility function, that is the
one involving the minimum number of interactions. For this reason, to start we suppose that each
criterion can interact with at most one another criterion. Solving the MILP problem (9) in which ¢
has been fixed to 0.1, we get the total approximation error opterr=0.5. This means that, under the
hypothesis that each criterion can interact with at most one another criterion, there does not exist
any utility function of type (3) representing the satisfaction of all customers.

Since maxerror, indicating the maximum acceptable error, is set equal to 0.3, we decide to increase
the maximum number of criteria with which each criterion can interact. This means that now each
criterion can interact with at most two other criteria and not only one, as before. In consequence
of this assumption, constraints of type (10) should be added to the set of constraints E,. After
introducing all these constraints, and solving again MILP problem (9), we get o = 0, =0 for all ¢ €
C, and therefore opterr = 0. This time, there exist a utility function of type (3) representing
the satisfaction of all customers. From the MILP problem (9), we obtain v = 33 = 1 that is
Syn = {{1,2},{1,3}}; this means that criterion ‘product’ (1) interacts with both criteria ‘purchase
process’ (2) and ‘additional service’ (3).

After fixing v = 0, that is no admitting any deterioration of the total admissible error, in phase (ii)
(see Section 3.2), we solve MILP problem (11) to determine a set of couples of interacting criteria.
Solving the MILP problem (11), we get the same interactions as we found previously. This means
that the set Syn of couples of criteria is the minimum one with respect to the inclusion.

In phase (iii) (see Section 3.3), we proceed in two steps to find the most discriminating utility func-
tion. In the first step, when maximizing the discrimination of satisfaction levels of the comprehensive
utility, we find €comprenensive = 0.5 While the utility function and the interactions are shown in Table
2. In this case, the couples of criteria {1,2} and {1, 3} present only positive interactions while couple
of criteria {2, 3} is not interacting.

At this point, in the second step, in order to maximize the discrimination of satisfaction levels of
the marginal utilities we solve the MILP problem (13) finding the utility function shown in Table
3. Looking at Table 3(b), we observe that couples of criteria {1,2} and {1, 3} present positive and
negative interactions while the couple of criteria {2,3} is not interacting. In particular, comparing
the levels of the interactions for each pair of levels, we observe that the negative interaction is greater
or equal to the positive interaction. For example, looking at the interactions of the pair (V, D) for
the couple of criteria {1,3}, we have syn{;(V, D) = 0.1 and syn3(V, D) = 0.4.

In phase (ii) of the illustrative example presented above, we found the minimal set Syn; = {(1,2), (1, 3)}.
Looking for other minimal sets, we solve the MILP problem (14) that does not give other solutions.
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Table 2: Parameters of the most discriminating utility function resulting from optimal solution of
MILP problem (12)

(a) Marginal utilities and inter-

actions (b) Values of the interactions for all pairs of levels
up | ug Jug | U ’ ‘ synE ‘ Syljo ‘ SYH1+3 ‘ Syljs ‘ syn2+3 ‘ SyTgg ‘

D0 0]0]0 VV ] 05 0 0.5 0 0 0
S| 00 0]05 VS| 0 0 0.5 0 0 0
V]0J0ojJ0o]1 VD | 0 0 0.5 0 0 0
SV 0.5 0 0.5 0 0 0

Y12 | 713 | 723 SS 0 0 0.5 0 0 0
L1710 SD| 0 0 0 0 0 0
DV 0 0 0.5 0 0 0

DS 0 0 0 0 0 0

DD 0 0 0 0 0 0

Table 3: Parameters of the most discriminating utility function resulting from optimal solution of
MILP problem (13)

(a) Marginal utilities and inter-

actions (b) Values of the interactions for all pairs of levels
u [uy [us [ U | [ synfy [ synp, | synfy | syng, | syng; | syng |

Do J]0}]0]0 VvV | 03 1 0.1 1 0 0

S |06]04]04]05 VS| o 06 | 0.1 | 06 0 0

V] i1]08/08)1 VD | 0 04 | 01 | 04 0 0

SsV| 03 | 08 | 01| 08 0 0

Y12 | Y13 | Y23 SS 0 0.6 0.1 0.4 0 0

1 1110 SD| 0 0.2 0 0.4 0 0

DV | 0 08 | 0.1 | 04 0 0

DS| 0 0.4 0 0.4 0 0

DD| 0 0 0 0 0 0

This means that Syn; is the only minimal set of couples of interacting criteria and therefore the sat-
isfaction of the customers can be described in a unique way, that is considering positive and negative
interaction for the couples of criteria {1,2} and {1,3}. Applying the ROR as described in Section
4.2, and after fixing opt; = opty = 0.1, we show here some interesting observations:

e profile (D, S, V) is strongly necessarily preferred to profile (D, V,.5),
e profile (S, V, D) is necessarily preferred but not strongly necessarily preferred to profile (V, D, S),
e profile (V, .S, D) is neither weakly possibly nor possibly preferred to profile (S, V) S).

The first result, for example, could be interpreted by saying that considering “Dissatisfied” level for
‘product’ , the customers prefer to have “Satisfied” level for ‘purchase process’ and “Very Satisfied”
level for ‘additional service’ rather than “Very Satisfied” level for ‘purchase product’ and “Satisfied”
level for ‘additional service’.
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6 Conclusions

In this paper, we proposed MUSA-INT, a new multicriteria customer satisfaction analysis method
able to take into account positive and negative interactions among criteria, even if the customers’
judgments are qualitative and not quantitative. To explain the customer’s preferences, the method
employs an additive utility function augmented with components representing positive and negative
interactions between two satisfaction levels of two criteria.

Some strong points of our method are listed hereafter:

e the criteria are expressed on ordinal scales, without the necessity of expressing all the criteria
on a common ordinal or cardinal scale, as this is the case of the Choquet integral or some other
fuzzy integrals;

e the model reveals the interactions among criteria in the customer satisfaction evaluation of a
product or a service;

e the interactions among criteria have a meaningful interpretation for the customer as a bonus
(for positive interaction) or penalty (for negative interaction), added to or subtracted from the
sum of marginal utility values;

e there is a parsimonious representation of the interactions by considering minimal pairs of sets
of couples of interacting criteria,

e one can identify all minimal pairs of sets of couples of interacting criteria;

e as the preference model (utility function) representing the customers’ satisfaction is, in general,
not unique, it is possible to take into account the whole set of compatible preference models
adopting the Robust Ordinal Regression methodology.

We envisage some possible directions of future research:

(1) Consideration of positive or negative interaction not only between couples of criteria, but also
triples, quadruples and, generally, sets of criteria of cardinality greater than 2. Using the
example of a supermarket, it may be reasonable to admit that there is a specific surplus in the
appreciation due to the presence at the same time of low prices, special offers and quality. In
this case, the considered utility function will become

U(sateni1) = Zui(satm)%— Z syn'(sat.;,i € A)— Z syn,(sat.;,i € A), c € C (18)
i—1

AGSyng AeSyng,

where Syng,, Syng, C 2! are the families of all the subsets of criteria for which there is a positive
interaction and a negative interaction, respectively. Considerations of interaction among criteria
in subsets with cardinality greater than 2 requires to pay a specific attention to the trade-
off between the better knowledge one gets about customer satisfaction and the additional
computational effort required to get this knowledge.

(2) The representation of customers’ preferences using an outranking model instead of a utility
function; in this case, the interaction can be represented taking into account the concordance
index of ELECTRE method presented in [10], or the bipolar PROMETHEE proposed in [6].

19



(3) Consideration of a hierarchal structure of criteria in the customers’ survey. Indeed, very often the

customers are required to evaluate features of a product or a service organized in a hierarchical
way. For instance, taking into account our illustrative example, product satisfaction could be
split into satisfaction with respect to aspects A;, A, and Az, so that we have an evaluation
on the three aspects and a comprehensive evaluation with respect to ‘product’. A similar
level of detail can be considered for ‘purchase product’ and ‘additional service’. In this case,
we could consider an ordinal regression approach concordant with the principle of Multiple
Criteria Hierarchy Process [2, 7, 8].

(4) Application of all ROR extensions, such as SMAA applied to Robust Ordinal Regression [38].
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Appendix

Computational details

In the following, we shall characterize only the computational effort of the MILP problem (9) solved
in phase (i), because the other MILP problems solved in phases (ii) and (iii) have a similar number
of constraints and variables.

Considering r customers, n criteria, s; levels for criterion ¢ and s,; levels of the comprehensive
utility we get:

e Variables:

(S1) ZSZ+S”+1+2ZZ )+ 2 r—l—(2>

=1 j=i+1
(82)282+8n+1+222 )+2- r+2(2)
=1 j=i+1
(s3) Zsﬁs,ﬁﬁz S (sos) 42004 (2)
=1 j=i+1
For example, in our case, where n = 3, s; = 3,7 = 1,...,4, and there are 24 customers, we have

117 variables for option (S1), 120 variables for option (S2) and 90 variables for option (S3).
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e Constraints:

n n—1 n [ s;

(S1) T+n+1+2<g)+Z(8i—1)+(8n+1—1)+3z > ZZ p-q—1) +1—|—n—|—2(g)
i=1 i=1 j=i+1 Lp=1 ¢=1
n n—-1 n [ s; T
(S2) r+n+1+2<g)+Z(si—1)+(sn+1—1)+3z > ZZ q—1) +1+n+3(§)
i=1 i=1 j=i+1 Lp=1 ¢=1 i
n u - n
(S3) r+n+1+(2)+izl(si—1) (Spy1—1) +2ZZU;1 [;; qg—1) +1+n+(2)

In our example, we have 295 constraints for option (S1), 298 constraints for option (S2) and 208
constraints for option (S3).

Let us observe that the number of constraints can be reduced, as stated also previously in the paper,
using the transitivity of >. For example, let us consider 9 elements in the set A = {a,b,c,d, e, f,g,h,i}
and a transitive relation R on the cartesian product A x A, shown in Table 4(a). Let us observe that
in Table 4(a), 27 couples belong to R, while in Table 4(b), using the transitivity of R we have only
12 couples, reducing in this way 15 couples.

Reasoning in this way, we can considerably reduce the number of constraints. In fact, for option
(S1) we obtain 160 constraints, i.e. 135 less, while for options (S2) and (S3) we get 163 and 118
constraints, i.e. 135 less and 90 less, respectively.

Table 4: Reduction of the constraints obtained using the transitivity of the relation R

(b) Minimal couples in the relation R after

(a) Binary relation on the set A using the transitivity
(Rla|bjc|d]e[f|g[h[i] | [a[bfc[d[e[f[g[h]i]
a|0]0]0]O[O]OIO|0]O a|[0[{0]0]0]0]0O]0O]0]O0
b/ 1[{0[0/0J0]|0[0]0]O0 b|1[{0/0]0]0|0|0]0]O0
c|1|1]{0[{0]0O[0]O0O[O0]O c|0]1(0]0]0]0OJO]O0|O0
d|{1[{0]0]0]O0O|0OJ0O]O0]|O d{ 1]0/0]0/0]0]0|0]O0
e | 1/1]0]1]0/0[0]0]O0 e 0/1(0]1{0]0]0]0]O0
f{1{1]1{1]1/0/0]0/0 f10[0|21{0(1]0J0]0|0
g|1]0/0]1(0]0J0|0]O0 g0]0{0]1/0/0J010]O0
h 1(1]0/1/1]0[1]0]0 h{0]0|0]0|1]0]|1|0]O0
i1 111 |1j1}j1}1]1 il0(0l0j0]0O|1[0O]1]0O
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