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Abstract. Interaction between criteria and hierarchical structure of cri-
teria are two important issues in Multiple Criteria Decision Analysis
(MCDA). Interaction between criteria is often dealt with fuzzy inte-
grals, especially the Choquet integral. To handle the hierarchy of criteria
in MCDA, a methodology called Multiple Criteria Hierarchy Process
(MCHP) has been recently proposed. It permits consideration of pref-
erence relations with respect to a subset of criteria at any level of the
hierarchy. In this paper, we propose to apply MCHP to the Choquet inte-
gral. In this way, using the Choquet integral and the MCHP, it is possible
to compare two alternatives not only globally, but also partially taking
into account a particular subset of criteria and the possible interaction
between them.

Keywords: Multiple criteria decision aiding, Choquet integral, Multiple
Criteria Hierarchy Process.

1 Introduction

In a multiple criteria decision problem (see [5] for a recent state of the art),
an alternative a, belonging to a finite set of m alternatives A = {a, b, c, . . .}, is
evaluated on the basis of a consistent family of n criteria G = {g1, g2, . . . , gn}.
In our approach we make the assumption that each criterion gi : A → R is an
interval scale of measurement. From here on, we will use the terms criterion gi
or criterion i interchangeably (i = 1, 2, . . . , n). Without loss of generality, we
assume that all the criteria have to be maximized.

The purpose of Multi-Attribute Utility Theory (MAUT) [10] is to represent
the preferences of a Decision Maker (DM) on a set of alternatives A by an overall
value function U : Rn → R with U(g1(a), . . . , gn(a)) = U(a):

– a is indifferent to b ⇔ U(a) = U(b),

– a is preferred to b ⇔ U(a) > U(b).



The principal aggregation model of value function is the multiple attribute
additive utility [10]:

U(a) = u1(g1(a)) + u2(g2(a)) + . . . + un(gn(a)) with a ∈ A,

where ui are non-decreasing marginal value functions for i = 1, 2, . . . , n.
As it is well-known in literature, the underlying assumption of the prefer-

ence independence of the multiple attribute additive utility is unrealistic since it
doesn’t permit to represent interaction between the criteria under consideration.
In a decision problem we, usually, distinguish between positive and negative in-
teraction among criteria, representing synergy and redundancy among criteria
respectively. In particular, two criteria are synergic (redundant) when the com-
prehensive importance of these two criteria is greater (smaller) than the sum of
the importance of the two criteria considered separately.

Within Multiple Criteria Decision Analysis (MCDA), the interaction of crite-
ria has been considered in a decision model based upon a non-additive integral,
viz. the Choquet integral [3] (see [7] for a comprehensive survey on the use of
non-additive integrals in MCDA).

One of the main drawbacks of the Choquet integral decision model is the
elicitation of its parameters representing the importance and interaction between
criteria.

A great majority of methods designed for MCDA, assume that all evaluation
criteria are considered at the same level, however, it is often the case that a prac-
tical application is imposing a hierarchical structure of criteria. For example, in
economic ranking, alternatives may be evaluated on indicators which aggregate
evaluations on several sub-indicators, and these sub-indicators may aggregate
another set of sub-indicators, etc. In this case, the marginal value functions may
refer to all levels of the hierarchy, representing values of particular scores of the
alternatives on indicators, sub-indicators, sub-sub-indicators, etc. Considering
hierarchical, instead of flat, structure of criteria, permits decomposition of a
complex decision problem into smaller problems involving less criteria. To han-
dle the hierarchy of criteria, the Multiple Criteria Hierarchy Process (MCHP) [4]
could be applied. The basic idea of MCHP relies on consideration of preference
relations at each node of the hierarchy tree of criteria. These preference relations
concern both the phase of eliciting preference information, and the phase of an-
alyzing a final recommendation by the DM. For example, in a decision problem
related to evaluation of students, one can say not only that student a is compre-
hensively preferred to student b, i.e. a ≻ b, but also that a is comprehensively
preferred to b because a is preferred to b on subsets of subjects (subcriteria)
related to Mathematics and Physics, i.e. a ≻Mathematics b and a ≻Physics b,
even if b is preferred to a on subjects related to Humanities, i.e. b ≻Humanities a.
Moreover, one can also say that, for example, a is preferred to b on the subset of
subjects related to Mathematics because, considering Analysis and Algebra as
subjects (sub-criteria) related to Mathematics, a is preferred to b on Analysis,
i.e. a ≻Analysis b, and this is enough to compensate the fact that b is preferred
to a on Algebra, i.e. b ≻Algebra a.



In this paper, we apply the MCHP to the Choquet integral.
The paper is organized as follows. In Section 2, we present the basic concepts

relative to interaction between criteria and to the Choquet integral. In Section
3, we describe the MCHP. In Section 4, we put together the MCHP and the
Choquet integral. Section 5 contains a didactic example in which we describe
the application of the new methodology. Some conclusions and future directions
of research are presented in Section 6.

2 The Choquet integral decision model

Let 2G be the power set of G (i.e. the set of all subsets of G); a fuzzy measure
(capacity) on G is defined as a set function µ : 2G → [0, 1] satisfying the following
properties:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),
2a) ∀ T ⊆ R ⊆ G, µ(T ) ≤ µ(R) (monotonicity condition).

A fuzzy measure is said to be additive if µ(T ∪ R) = µ(T ) + µ(R), for any
T,R ⊆ G such that T ∩R = ∅. An additive fuzzy measure is determined uniquely

by µ({1}), µ({2}) . . . , µ({n}). In fact, in this case, ∀ T ⊆ G, µ(T ) =
∑

i∈T

µ({i}).

In the other cases, we have to define a value µ(T ) for every subset T of G,
obtaining 2|G| coefficients values. Therefore, we have to calculate the values of
2|G| − 2 coefficients, since we know that µ(∅) = 0 and µ(G) = 1.

The Möbius representation of the fuzzy measure µ (see [13]) is defined by
the function a : 2G → R (see [14]) such that:

µ(R) =
∑

T⊆R

a(T ).

Let us observe that if R is a singleton, i.e. R = {i} with i = 1, · · · , n then
µ({i}) = a({i}).

If R is a couple (non-ordered pair) of criteria, i.e. R = {i, j}, then µ({i, j}) =
a({i}) + a({j}) + a({i, j}).

In general, the Möbius representation a(R) is obtained by µ(R) in the fol-
lowing way:

a(R) =
∑

T⊆R

(−1)|R−T |µ(T ).

In terms of Möbius representation (see [2]), properties 1a) and 2a) are, respec-
tively, formulated as:

1b) a(∅) = 0,
∑

T⊆G

a(T ) = 1,

2b) ∀ i ∈ R and ∀R ⊆ G,
∑

T⊆R

a(T ) ≥ 0.



Let us observe that in MCDA, the importance of any criterion gi ∈ G should
be evaluated considering all its global effects in the decision problem at hand;
these effects can be “decomposed” from both theoretical and operational points
of view in effects of gi as single, and in combination with all other criteria.
Therefore, a criterion i ∈ G is important with respect to a fuzzy measure µ not
only when it is considered alone, i.e. for the value µ({i}) in itself, but also when
it interacts with other criteria from G, i.e. for every value µ(T ∪{i}), T ⊆ G\{i}.

Given x ∈ A and µ being a fuzzy measure on G, then the Choquet integral

[3] is defined by:

Cµ(x) =
n
∑

i=1

[(

g(i)(x)
)

−
(

g(i−1) (x)
)]

µ (Ai) , (1)

where (·) stands for a permutation of the indices of criteria such that:

g(1) (x) ≤ g(2) (x) ≤ ... ≤ g(n) (x) ,

with Ai = {(i), ...., (n)}, i = 1, .., n, and g(0) = 0.
The Choquet integral can be redefined in terms of the Möbius representation

[6], without reordering the criteria, as:

Cµ(x) =
∑

T⊆G

a(T ) min
i∈T

gi (x) . (2)

One of the main drawbacks of the Choquet integral is the necessity to elicitate
and give an adequate interpretation of 2|G|−2 parameters. In order to reduce the
number of parameters to be computed and to eliminate a too strict description
of the interactions among criteria, which is not realistic in many applications,
the concept of fuzzy k-additive measure has been considered [8].

A fuzzy measure is called k-additive if a(T ) = 0 with T ⊆ G, when |T | > k.
We observe that a 1-additive measure is the common additive fuzzy measure. In
many real decision problems, it suffices to consider 2-additive measures. In this
case, positive and negative interactions between couples of criteria are modeled
without considering the interaction among triples, quadruplets and generally n-
tuples, (with n > 2) of criteria. From the point of view of MCDA, the use of
2-additive measures is justified by observing that the information on the impor-
tance of the single criteria and the interactions between couples of criteria are
noteworthy. Moreover, it could be not easy or not straightforward for the DM
to provide information on the interactions among three or more criteria during
the decision procedure. From a computational point of view, the interest in the
2-additive measures lies in the fact that any decision model needs to evaluate a
number n+

(

n
2

)

of parameters (in terms of Möbius representation, a value a({i})
for every criterion i and a value a({i, j}) for every couple of distinct criteria
{i, j}.) With respect to a 2-additive fuzzy measure, the inverse transformation
to obtain the fuzzy measure µ(R) from the Möbius representation is defined as:

µ(R) =
∑

i∈R

a ({i}) +
∑

{i,j}⊆R

a ({i, j}) , ∀R ⊆ G. (3)



With regard to 2-additive measures, properties 1b) and 2b) have, respec-
tively, the following formulations:

1c) a (∅) = 0,
∑

i∈G

a ({i}) +
∑

{i,j}⊆G

a ({i, j}) = 1,

2c) a ({i}) ≥ 0, ∀i ∈ G, a ({i}) +
∑

j∈T

a ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} .

In this case, the representation of the Choquet integral of x ∈ A is given by:

Cµ(x) =
∑

{i}⊆G

a ({i}) (gi (x)) +
∑

{i,j}⊆G

a ({i, j}) min{gi (x) , gj (x)}. (4)

Finally, we recall the definitions of the importance and interaction indices
for a couple of criteria.

The Shapley value [15] expressing the importance of criterion i ∈ G, is given
by:

ϕ(i) =
∑

T⊆G:i/∈T

(|G− T | − 1)!|T |!

|G|!
[µ(T ∪ {i}) − µ(T )],

while the interaction index [12] expressing the sign and the magnitude of the
sinergy in a couple of criteria {i, j} ⊆ G, is given by

ϕ ({i, j}) =
∑

T⊆G:i,j /∈T

(|G− T | − 2)!|T |!

(|G| − 1)!
[µ(T∪{i, j})−µ(T∪{i}))−µ(T∪{j})+µ(T )].

In case of 2-additive capacities the Shapley value and the interaction index
can be expressed as follows:

ϕ ({i}) = a ({i}) +
∑

j∈G\{i}

a ({i, j})

2
, i ∈ G, (5)

ϕ ({i, j}) = a ({i, j}) . (6)

3 Multiple Criteria Hierarchy Process (MCHP)

In MCHP, a set G of hierarchically ordered criteria is considered, i.e. all criteria
are not considered at the same level, but they are distributed over l different
levels (see Figure 1). At level 1, there are first level criteria called root criteria.
Each root criterion has its own hierarchy tree. The leaves of each hierarchy tree
are at the last level l and they are called elementary subcriteria. Thus, in graph
theory terms, the whole hierarchy is a forest. We will use the following notation:

– l is the number of levels in the hierarchy of criteria,



– G is the set of all criteria at all considered levels,
– IG is the set of indices of particular criteria representing position of criteria

in the hierarchy,
– m is the number of the first level criteria, G1, . . . , Gm,
– Gr ∈ G, with r = (i1, . . . , ih) ∈ IG , denotes a subcriterion of the first level

criterion Gi1 at level h; the first level criteria are denoted by Gi1 , i1 =
1, . . . ,m,

– n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct
subcriteria of Gr are G(r,1), . . . , G(r,n(r)),

– gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion
of the first level criterion Gi1 , i.e. a criterion at level l of the hierarchy tree
of Gi1 ,

– EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} where















i1 = 1, . . . ,m
i2 = 1, . . . , n(i1)
· · · · · ·
il = 1, . . . , n(i1, . . . , il−1)

– E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} where







ih+1 = 1, . . . , n(r)
· · · · · ·
il = 1, . . . , n(r, ih+1, . . . , il−1)

thus, E(Gr) ⊆ EL,
– when r = 0, then by Gr = G0, we mean the entire set of criteria and

not a particular criterion or subcriterion; in this particular case, we have
E(G0) = EL,

– given F ⊆ (G \ EL), E(F) = {E(Gr) : Gr ∈ F}, that is E(F) is composed
by all elementary subcriteria descending from at least one criterion in F ,

– given Gr ∈ G, r ∈ IG ∩N
h

(Gr is a criterion at the level h), 1 ≤ h < l, and
k ∈ {h + 1, . . . , l}, we define:

Gk
r

=
{

G(r,w) ∈ G : (r, w) ∈ IG ∩N
k
}

being the set of all subcriteria of criterion Gr at the level k. (For example,
in Figure 1, we have that

G2
i1

=
{

G(i1,1), G(i1,2), G(i1,3)

}

and G3
(i1,2)

=
{

g(i1,2,1), g(i2,2,2)
}

)

Each alternative a ∈ A is evaluated directly on the elementary subcriteria only,
such that to each alternative a ∈ A there corresponds a vector of evaluations:

(gt1(a), . . . , gtn(a)) , n = |EL| .

Within MCHP, in each node Gr ∈ G of the hierarchy tree there exists a
preference relation %r on A, such that for all a, b ∈ A, a %r b means “a is at least
as good as b on subcriterion Gr”. In the particular case where Gr = gt, t ∈ EL,
a %t b holds if gt(a) ≥ gt(b).



Fig. 1. Hierarchy of criteria for the first level (root) criterion Gi1

Gi1

G(i1,1) G(i1,2) G(i1,3)

g(i1,1,1) g(i1,1,2) g(i1,1,3) g(i1,2,1) g(i1,2,2) g(i1,3,1) g(i1,3,2) g(i1,3,3) g(i1,3,4)

4 Multiple Criteria Hierarchy Process for Choquet
integral preference model

In this article, we will aggregate the evaluations of alternative a ∈ A with respect
to the elementary subcriteria gt, t ∈ EL, using a Choquet integral as follows.

On the basis of a capacity µ defined on the power set of EL, for all a, b ∈ A,
a % b if Cµ(a) ≥ Cµ(b) where Cµ(a) and Cµ(b) are the Choquet integrals with
respect to µ of the vectors [gt(a), t ∈ EL] and [gt(b), t ∈ EL], respectively.

For all Gr ∈ G, r ∈ IG ∩N
h

(Gr is a criterion at the level h), h = 1, . . . , l − 1
and for all k = h + 1, . . . , l, we can define the following capacity:

µk
r : 2G

k
r → [0, 1]

such that, for all F ⊆ Gk
r , we have that

µk
r
(F) =

µ(E(F))

µ(E(Gr))

In this way, µk
r

is a capacity defined on the power set of Gk
r

that could be
computed using the capacity µ defined on the power set of EL.
In the following, we shall write µr instead of µl

r
.

For all a, b ∈ A, a %r b if Cµr
(a) ≥ Cµr

(b), where Cµr
(a) and Cµr

(b) are
the Choquet integrals with respect to µr of the vectors [gt(a), t ∈ E(Gr)] and
[gt(b), t ∈ E(Gr)], respectively. Observe that for all a ∈ A,

Cµr
(a) =

Cµ(ar)

µ(E(Gr))
(7)

where ar is a fictitious alternative having the same evaluations of a on elementary
criteria from E(Gr) and null evaluation on criteria outside E(Gr), i.e. gs(ar) =
gs(a) if s ∈ E(Gr) and gs(ar) = 0 if s /∈ E(Gr).



The Shapley value expressing the importance of criterion G(r,w) ∈ Gk
r being

thus a subcriterion of Gr at the level k is:

ϕk
r (G(r,w)) =

∑

T⊆Gk
r
\{G(r,w)}

(|Gk
r
\ T | − 1)!|T |!

|Gk
r
|!

[

µk
r (T ∪

{

G(r,w)

}

) − µk
r (T )

]

(8)

while the interaction index expressing the sign and the magnitude of the sinergy
in a couple of criteria G(r,w1), G(r,w2) ∈ Gk

r is given by:

ϕk
r
(G(r,w1), G(r,w2)) =

∑

T⊆Gk
r
\{G(r,w1),G(r,w2)}

(|Gk
r
\ T | − 2)!|T |!

(|Gk
r | − 1)!

· (9)

·
[

µk
r (T ∪

{

G(r,w1), G(r,w2)

}

) − µk
r (T ∪

{

G(r,w1)

}

) − µk
r (T ∪

{

G(r,w2)

}

) + µk
r (T )

]

In case the capacity µ on {gt, t ∈ EL} is 2-additive, the Shapley value ϕk
r
(G(r,w))

and the interaction index ϕk
r
(G(r,w1), G(r,w2)), with G(r,w), G(r,w1), G(r,w2) ∈ Gk

r
,

can be expressed as follows:

ϕk
r
(G(r,w)) =



















∑

t∈E(G(r,w))

a(gt) +
∑

t1,t2∈E(G(r,w))

a(gt1 , gt2) +
∑

t1∈E(G(r,w))

t2∈Gk
r
\{G(r,w)}

a(gt1 , gt2)

2



















·
1

µ(E(Gr))
(10)

ϕk
r
(G(r,w1), G(r,w2)) =



















∑

t1∈E(G(r,w1)),

t2∈E(G(r,w2))

a(gt1 , gt2)



















·
1

µ(E(Gr))
(11)

Taking into account the expression of the Shapley index in equation (8) and
Gs1

, Gs2
∈ Gk

r1
∩Gk

r2
(that is Gs1

and Gs2
are subcriteria of both Gr1

and Gr2

and they are sited at the level k), and supposing, without loss of generality, that
r2 = (r1, w) (that is Gr2

is a subcriterion of Gr1
), it is worth noting that the

following inequalities could be verified:

ϕk
r1

(Gs1
) > ϕk

r1
(Gs2

) and ϕk
r2

(Gs1
) < ϕk

r2
(Gs2

) (or viceversa)

This means that the importance of the criterion Gs1
is greater than the im-

portance of the criterion Gs2
if they are considered as subcriteria of Gr1

, but
the importance of Gs2

is greater than importance of Gs1
if they are considered

as subcriteria of Gr2
. We shall show this possibility in the didactic example

presented in the next section.



5 A didactic example

Let us consider a set of seven students A = {a, b, c, d, e, f, g} evaluated on the ba-
sis of two macro subjects: Science and Humanities. Science has two sub-subjects:
Mathematics and Physics, while Humanities has two sub-subjects: Literature
and Philosophy. The number of levels considered is two.

In terms of notation, we have G =
{

G1, G2, G(1,1), G(1,2), G(2,1), G(2,2)

}

,
and the elements of G denote respectively, Science, Humanities, Mathematics,
Physics, Literature and Philosophy. The students are evaluated on the basis of
the elementary criteria only; such evaluations are shown in Table 1.

Table 1. Matrix evaluation

Science Humanities

Students Mathematics Physics Literature Philosophy

a 18 18 12 12

b 16 16 16 16

c 14 14 18 18

d 18 12 16 16

e 15 15 18 14

f 18 14 14 18

g 15 17 18 16

In the following, we shall consider a 2-additive capacity determined by the
Möbius measures in Table 2.

Table 2. Möbius measures

a(G(1,1)) 0.5

a(G(1,2)) 0.5

a(G(2,1)) 0.2

a(G(2,2)) 0.15

a(G(1,1), G(1,2)) −0.45

a(G(1,1), G(2,1)) 0

a(G(1,1), G(2,2)) 0.1

a(G(1,2), G(2,1)) 0.05

a(G(1,2), G(2,2)) 0.1

a(G(2,1), G(2,2)) −0.15

Applying the expression (7) of the hierarchal Choquet integral introduced in
Section 4, we can compute the evaluation of every student with respect to each
subject Science (G1) and Humanities (G2) (see Table 3).

For example, Cµ1
(a) is evaluated by considering a1 a fictitious alternative

with the same evaluations of a on the elementary criteria E(G1) and null evalu-



ations on E(G2). As a result the Choquet integral Cµ1
(a) is given by

Cµ(a1)

µ(E(G1))
,

where µ1(F) =
µ(E(F))

µ(E(G1))
with F ⊆ G1.

Table 3. Choquet integrals with respect to the macro-subjects Science and Humanities

Science Humanities

Mathematics Physics Literature Philosophy Cµr

Cµ1
(a) 18 18 0 0 18

Cµ2
(a) 0 0 12 12 12

Cµ1
(b) 16 16 0 0 16

Cµ2
(b) 0 0 16 16 16

Cµ1
(c) 14 14 0 0 14

Cµ2
(c) 0 0 18 18 18

Cµ1
(d) 18 12 0 0 17.45

Cµ2
(d) 0 0 16 16 16

Cµ1
(e) 15 15 0 0 15

Cµ2
(e) 0 0 18 14 18

Cµ1
(f) 18 14 0 0 17.64

Cµ2
(f) 0 0 14 18 17

Cµ1
(g) 15 17 0 0 16.82

Cµ2
(g) 0 0 18 16 18

By considering the capacities on the elementary criteria displayed in Table 2
and adopting the expression (10) defined in Section 4, we compute the Shapley
values of the elementary criteria G(r,i) with respect to their relative overcriterion
Gr (see Table 4). Then the overall Shapley values of the elementary criteria (i.e.
with respect to G0) are calculated and showed in Table 5. Finally, the Shapley
values of subcriteria G1 (Science) and G2 (Humanities) and their interaction in-
dex (see the expression (11) introduced in Section 4) are computed and displayed
in Table 6.

As it has been pointed out in Section 4, in this example it results that Lit-
erature is more important than Philosophy, if they are considered as subcriteria
of Humanities (see Table 4); on the contrary Philosophy is more important than
Literature if they are considered as subcriteria of the whole set of criteria G0

(see Table 5).

Table 4. Shapley values of every elementary criteria with respect to every macro
subject Gr

Science Humanities

Mathematics Physics Literature Philosophy

ϕk
r (G(r,w)) 0.5 0.5 0.625 0.375



Table 5. Shapley values of the elementary criteria

ϕk
r (G(r,w))

Mathematics 0.325

Physics 0.35

Literature 0.15

Philosophy 0.175

Table 6. The Shapley values and interaction index of Science (G1) and Humanities
(G2)

ϕk
r (G(r,w))

Science 0.675

Humanities 0.325

ϕk
r (G(r,w1), G(r,w2))

Science and Humanities 0.25

6 Conclusions

We have proposed the application of Multiple Criteria Hierarchy Process (MCHP)
to a preference model expressed in terms of Choquet integral, in order to deal
with interaction between criteria. Application of MCHP to Chqouet integral
permits to define importance and interactions of criteria with respect to any
subriterion in the hierarchy. To apply MCHP to Choquet integral in real world
problems, it is necessary to elicit preference parameters, which, in this case, are
the non interactive weights represented by a capacity. MCHP in this context
is important because it permits the DM to give preference information related
to any criterion in the hierarchy. For example, the DM can say that student a
is globally preferred to student b, but he can also say that student c is better
than student d in Humanities. DM can also say that criterion Science is more
important than Humanities or that the interaction between Physics and Philos-
ophy is greater than the interaction between Mathematics and Literature. Many
multicriteria disaggregation procedures have been proposed to infer a capacity
from those types of preference information in case the hierarchy of criteria is not
considered (see for example, [11]). Recently, a new multicriteria disaggregation
method has been proposed to take into account that, in general, more than one
capacity is able to represent the preference expressed by the DM: Non Additive
Robust Ordinal Regression (NAROR) [1]). NAROR considers all the capacities
that are compatible with the preference information given by the DM, adopting
the concepts of possible and necessary preference introduced in [9]. In simple
words, a is necessarily or possibly preferred to b, if it is preferred for all com-
patible capacities or for at least one compatible capacity, respectively. In our



opinion, application of NAROR to MCHP for Choquet integral will permit to
take into account interaction of criteria and hierarchy in a very efficent way in
many complex real world problems. Thus, we plan to develop such an extension
of NAROR to MCHP applied to Choquet integral in a future paper.
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tions. Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:340–368, 1964.

14. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
15. L.S. Shapley. A value for n-person games. In Tucker A. W. Kuhn, H. W., editor,

Contributions to the Theory of Games II, page 307. Princeton University Press,
Princeton, 1953.


