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Abstract: Robust Ordinal Regression (ROR) supports Multiple Criteria Decision Process by

considering all sets of parameters of an assumed preference model, that are compatible with

preference information elicited by a Decision Maker (DM). As a result of ROR, one gets necessary

and possible preference relations in the set of alternatives, which hold for all compatible sets of

parameters, or for at least one compatible set of parameters, respectively. In this paper, we

propose an extension of ELECTRE and PROMETHEE methods to the case of the hierarchy of

criteria, which was never considered before. Then, we adapt ROR to the hierarchical versions of

ELECTRE and PROMETHEE methods.
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1 Introduction

Multiple Criteria Decision Aiding (MCDA) copes with three main types of decision problems: ranking,

sorting and choice. Ranking problems consist of rank ordering of all alternatives from the worst to the best,

looking at their evaluations on the considered criteria; sorting problems consist in assigning each alternative

to a predefined and preference ordered class; choice problems consist in selecting a subset of alternatives

considered as the best (for a more detailed survey, see [6, 4]). In order to handle these problems, one can

use either of the two different methodologies:

• assign to each alternative a utility value, i.e. a real number reflecting the degree of desirability of a

considered alternative, independently from the evaluations of other alternatives,

• compare alternatives pairwise, in order to discover if one is preferred to the other, or if they are

indifferent or incomparable.
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In the first case, to associate a utility value to an alternative, taking into account its evaluations on the

considered criteria, multi attribute utility theory (MAUT) [14] frequently uses an additive value function

defined as a sum of as many marginal value functions as there are criteria. In the second case, outranking

methods [2, 16] construct a binary relation which reads: “alternative a is at least as good as alternative b”,

which means “a outranks b”. This construction takes into account evaluation of both compared alterna-

tives on the considered criteria, as well as some comparison thresholds and weights expressing the relative

importance of the criteria.

Generally, the information provided by the dominance relation on the set of alternatives is poor, and

makes many alternatives incomparable. To enrich this relation, the Decision Maker (DM) is asked to provide

some preference information, so that the outranking relation giving account of it makes alternatives more

comparable. As this comparability is consistent with the value system of the DM, the outranking relation

can be considered as the DM’s preference model.

Preference information can be direct or indirect; direct means that the DM can give information re-

garding values of parameters of the considered preference model, while indirect means that the DM gives

information regarding some alternatives (s)he knows well, and from this information there are inferred values

of parameters of the considered preference model. Generally, the indirect methodology is more realistic (see,

e.g.,[12],[15],[20]), because the DM does not always understand well enough the meaning of all these param-

eters. Using the indirect methodology, there usually exist more than one set of parameters compatible with

the preference information provided by the DM, and each of these sets of parameters could give different

results to the decision problem at hand. For this reason, any choice of one specific set of parameters com-

patible with preference information provided by the DM could be considered as arbitrary and meaningless.

In order to deal with this inconvenience, Robust Ordinal Regression (ROR) takes into account not only one

set of parameters compatible with the preference information provided by the DM, but considers all these

sets simultaneously defining two preference relations:

• the necessary preference relation, for which “alternative a is necessarily preferred to alternative b” if

a is at least as good as b for all compatible sets of parameters,

• the possible preference relation, for which “alternative a is possibly preferred to alternative b” if a is

at least as good as b for at least one compatible set of parameters.

ROR methods have been proposed for ranking and choice problems [8, 10], sorting problems [11], outranking

models [9] and non additive models [1].

Remark that not all multiple criteria decision problems present evaluation criteria at the same level, but

there can exist a hierarchical structure of criteria. This is the case, for example, of environmental planning
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in which it is possible to take into account economic, social and environmental criteria, and each of these

criteria can be composed of subcriteria on which the alternatives are evaluated. In [3], we have considered

the hierarchy of criteria in the context of ROR, showing the following advantages of using this procedure:

• the DM can express preference information not only in a comprehensive way but also in a partial way,

that is considering preference information with respect to a subcriterion at an intermediate level of

the hierarchy,

• the DM can obtain results not only with respect to the comprehensive view, but also results at

intermediate levels of the hierarchy; for example, the DM can learn if a is necessarily or possibly

preferred to b with respect to a subcriterion G at an intermediate level of the hierarchy.

Let us remark that the use of the hierarchy of criteria proposed by our approach is rather different from

other MCDA methodologies assuming a hierarchical structure of the family of criteria. In fact, while in

general the hierarchy of criteria is used to decompose and make easier the preference elicitation concerning

pairwise comparisons of criteria with respect to relative importance, in our approach, a preference relation

in each node of the hierarchy constitutes a base for the discussion with the DM.

Indeed, the preference relations in particular nodes of the hierarchy are presented to the DM as con-

sequences (output) of her/his preference information provided at the input. In course of an interactive

process, the DM can add, modify or remove some items of the preference information if (s)he feels that the

preference relations do not reflect correctly her/his value system. This interactive process ends when the

DM gets convinced by the preference relations obtained in consequence of her/his preference information,

and thus accepts the recommendations provided by the MCDA methodology.

Observe that consideration of preference relations at each level of the hierarchy constitutes a specific

feature of our methodology, which we consider very useful in any decision process in which a hierarchy

of criteria is considered. Considering preference relations in particular nodes of the hierarchy permits

decomposition of arguments explaining the overall preferences. For example, in case of evaluations of

students, one could say that student a is comprehensively preferred to student b, because even if a is slightly

worse than b with respect to subjects related to Literature, he is much better with respect to subjects related

to Mathematics and Physics. Moreover, going in depth of the hierarchy, one could add that the preference

with respect to subjects related to Mathematics is based on better evaluations of student a on subjects

related to Analysis rather than on subjects related to Algebra.

It is worth noting that this specific use of the hierarchy of criteria can be applied to any MCDA method-

ology. In this paper, we are applying it to Robust Ordinal Regression approach, but it can be applied to

any other MCDA methodology, even those which use the hierarchy to ask the DM for pairwise comparisons
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of subcriteria with respect to their importance.

In this paper, we propose a generalization of outranking methods, more specifically ELECTRE and

PROMETHEE methods, to the case of the hierarchy of criteria. No similar attempt is known in the

literature. We extend the methodologies of ELECTRE and PROMETHEE to the case where the considered

criteria are not at the same level, but they are structured into several levels. In this way, the DM can

obtain information not only regarding the comprehensive outranking of an alternative a over an alternative

b, but also partially, that is, considering a particular criterion/subcriterion of the hierarchy. For example,

in the environmental planning problem, it will be possible to investigate if a certain location p1 outranks

another location p2 with respect to economic criteria, or environmental criteria, or social aspects, or with

respect to all criteria simultaneously. In this particular context, it is worth stressing that ELECTRE and

PROMETHEE methods can be considered as particular cases of our methodology, and for this reason, it

can be considered as a real generalization of these methods.

In the perspective of considering a constructive interaction between the DM and the analyst, we intend

to use the ROR methodology to deal with outranking methods in case of the hierarchy of criteria. The

application of ROR to ELECTRE and PROMETHEE methods has already been done in [9] and [13],

respectively, but also in this case, our methodology can be considered as their generalization because, of

course, the absence of hierarchy corresponds to the case of a hierarchy with only one level containing all the

criteria.

The paper is organized in the following way: in section 2, we recall the principal concept of the hierarchy

of criteria and describe the ELECTRE method generalized to this case; in section 3, we extend the concept of

ROR applied to ELECTRE (which constitutes ELECTREGKMS method) in case of the hierarchy of criteria,

and we propose a didactic example illustrating the use of ELECTRE and ELECTREGKMS methods applied

to a hierarchical structure of criteria; in section 4, we extend the PROMETHEE method to the case of the

hierarchy of criteria; in section 5, we describe the application of ROR to the PROMETHEE method in case of

the hierarchy of criteria, and we provide an example illustrating the PROMETHEE and PROMETHEEGKS

methods applied to a hierarchy of criteria; section 6 collects conclusions.

2 Hierarchical ELECTRE method

In this section, we recall the basic concepts of the hierarchy of criteria introduced in [3], and we introduce

the Hierarchical ELECTRE method.
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2.1 Hierarchical structure of the set of criteria

We suppose that evaluation criteria are not at the same level but they are structured into several levels (see

Figure 1);

• A = {a, b, c, . . .} is the finite set of alternatives,

• l is the number of levels in the hierarchy of criteria,

• G is the set of all criteria at all considered levels,

• IG is the set of indices of particular criteria representing position of the criteria in the hierarchy,

• m is the number of the first level (root) criteria, G1, . . . , Gm,

• Gr ∈ G, with r = (i1, . . . , ih) ∈ IG , denotes a subcriterion of the first level criterion Gi1 at level h,

• n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct subcriteria of Gr are

G(r,1), . . . , G(r,n(r)),

• gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion of the first level criterion

Gi1 , i.e a subcriterion at level l,

• EL is the set of indices of all elementary subcriteria:

EL = {t = (i1, . . . , il) ∈ IG} , where



































i1 = 1, . . . ,m

i2 = 1, . . . , n(i1)

· · · · · ·

il = 1, . . . , n(i1, . . . , il−1)

• E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) = {(r, ih+1, . . . , il) ∈ IG} , where























ih+1 = 1, . . . , n(r)

· · · · · ·

il = 1, . . . , n(r, ih+1, . . . , il−1)

thus E(Gr) ⊆ EL and, more precisely, E(Gr) = EL if all elementary subcriteria descend from criterion

Gr,

• LBO is the set of indices of all subcriteria of the last but one level,
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• LB(Gr) is the set of indices of subcriteria of the last but one level descending from criterion/subcriterion

Gr,

• when r = 0, then by Gr = G0, we mean the entire set of criteria and not a particular criterion or

subcriterion; in this particular case, we have E(G0) = EL and LB(G0) = LBO.

Figure 1: Example of the hierarchy of criteria starting from the first level (root) criterion Gi

Gi

Gi1

Gi11 Gi12 Gi13

Gi2

Gi21 Gi22

Gi3

Gi31 Gi32 Gi33 Gi34

Remark that, without loss of generality, we consider a hierarchical structure where each criterion belongs

to only one criterion of the level immediately above, that is a criterion Gr from the i-th level of the hierarchy

is a subcriterion of only one of the criteria of the (i−1)-th level (we call a structure of this type a partitioned

structure). Example of the hierarchy of criteria with a partitioned structure is presented in Figure 1. In

order to understand the reason of this restriction, let us examine an example of the hierarchy of criteria with

a non-partitioned structure shown in Figure 2. In this particular structure, criterion Gixx and elementary

subcriterion gixxx are subcriteria of more than one criterion of the level immediately above. In particular,

criterion Gixx is a subcriterion of criteria Gi1 and Gi2 while elementary subcriterion gixxx is a subcriterion

of criteria Gixx and Gi22. This means that both criteria influence the criteria they descend from, in a

different way. That is, the evaluations of alternatives with respect to elementary subcriterion gixxx will be

weighted in one way if gixxx is considered to be a subcriterion of criterion Gixx, and they could be weighted

in another way if gixxx is considered to be a subcriterion of criterion Gi22. In this way, we can distinguish

the contribution of gixxx to Gixx, from the contribution of gixxx to Gi22. In order to take into account

these different types of contribution, we propose to split gixxx in two “indicators”: gixx2, representing the

contribution of elementary subcriterion gixxx to Gixx, and gi221, representing the contribution of elementary

subcriterion gixxx to criterion Gi22. All alternatives will keep the same evaluations with respect to indicators

gixx2 and gi221, as they had with respect to criterion gixxx, but their weights kixx2 and ki221 could be different

and, moreover, they have to satisfy the relation: kixx2 + ki221 = kixxx; this means that the sum of weights

of new indicators gi221 and gixxx has to be equal to the weight of criterion gixxx. Doing in this way, we
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obtain the hierarchical structure shown in Figure 3. At this point, we observe that Gixx is a subcriterion

in common of Gi1 and Gi2, thus, we may proceed analogically to gixxx. So, we have to distinguish between

the contribution of Gixx to Gi1 and the contribution of Gixx to Gi2. But, in this case, subcriterion Gixx

influences the two above criteria via all its subcriteria (if any) and elementary subcriteria; for this reason we

have to split all subcriteria and elementary subcriteria descending from it (here: gixx1 and gixx2) in order

to take into account the different contribution they give to the above criteria. In this way we obtain the

partitioned hierarchical structure shown in Figure 4, where:

• subcriterion Gixx is split into indicators Gi12 and Gi21,

• indicator gixx1 is split into indicators gi121 and gi211, and thus, kixx1 = ki121 + ki211,

• indicator gixx2 is split into indicators gi122 and gi212, and thus, kixx2 = ki122 + ki212.

Figure 2: Example of the hierarchy of criteria with a non-partitioned structure

Gi

Gi1 Gi2

Gi22Gi11 Gixx

gixxx gi232gi333gi112gi111

Let us remark that the above splitting of criteria, which aims to take into account their contribution

to different criteria at an upper level, can be applied independently of the type of the preference model

used in the hierarchical MCDA method. Thus, it could also be used in the hierarchical method involving

multiattribute utility functions presented in [3].

2.2 Handling the hierarchy of criteria in ELECTRE methods

In this sub-section, we introduce a generalization of ELECTRE methods to the case of the hierarchy of

criteria. We start with the hierarchical generalization of the ELECTRE IS method, and then we extend this
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Figure 3: Transformation of non-partitioned structure (step 1)

Gi

Gi1 Gi2

Gi22Gi11 Gixx

gixx2 gi221 gi232gixx1gi112gi111

Figure 4: Partitioned structure resulting from the transformation of the non-partitioned one (step 2)

Gi

Gi1 Gi2

Gi22Gi11 Gi12 Gi21

gi122 gi211 gi212 gi221 gi232gi121gi112gi111

generalization on the ELECTRE III method (see [17, 18] for description of different ELECTRE methods).

Given a criterion/subcriterion Gr with r ∈ IG \EL, an outranking relation is a binary relation Sr ⊆ A×A

(in the following A×A = B), such that aSrb means “a is at least as good as b with respect to criterion Gr”.

Knowing if Sr is true or not for an ordered pair of alternatives (a, b) ∈ B, one is able to represent situations

of weak (Qr) or strict (Pr) preference (the two relations together called large preference), indifference (∼r),
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and incomparability (Rr) among a and b:

aSrb and not(bSra) ⇔ aQrb or aPrb,

aSrb and bSra⇔ a ∼r b,

not(aSrb) and not(bSra) ⇔ aRrb.



























Let us denote by kt the weight assigned to elementary subcriterion gt, t ∈ EL. It is a non-negative real

number representing the relative importance (strength) of elementary subcriterion gt within the family of

elementary subcriteria. The indifference, preference, and veto thresholds on elementary subcriterion gt are

denoted by qt, pt and vt, respectively. qt is the greatest difference between the evaluations of two alternatives,

compatible with the indifference among them with respect to elementary subcriterion gt; pt is the smallest

difference between the evaluations of two alternatives, compatible with the preference of an alternative over

another with respect to elementary subcriterion gt; vt is an upper bound beyond which the discordance

about the assertion “a is at least as good as b” cannot surpass. For consistency, vt > pt ≥ qt ≥ 0, for all

t ∈ EL. The thresholds on particular elementary subcriterion can be either constant for all alternatives, or

dependent on evaluation of a, gt(a). In the sequel, we assume, for simplicity, constant thresholds, although

this is not a necessary assumption for our methodology. Moreover, we assume without loss of generality

that all criteria are increasing monotone with respect to the preference, i.e. the greater the evaluation, the

better it is.

Construction of an outranking relation involves two concepts known as concordance and non-discordance

tests. The concordance test involves calculation of concordance index Cr(a, b). It represents the strength of

the coalition of elementary subcriteria gt, t ∈ E(Gr), being in favor of aSrb. This coalition is composed of

two subsets of elementary subcriteria:

• subset of elementary subcriteria gt, t ∈ E(Gr), being clearly in favor of aSrb, i.e. such that, gt(a) ≥

gt(b) − qt,

• subset of elementary subcriteria gt, t ∈ E(Gr), that do not oppose to aSrb, while being in an ambiguous

position with respect to this assertion, i.e. those with bQra, which is equivalent to gt(b)−pt < gt(a) <

gt(b) − qt.

Note that aSrb is true not only when alternative a is preferred to alternative b on criterion/subcriterion Gr

but also when a is indifferent to b on Gr, and even when b dominates a on Gr by a sufficiently small amount

in each elementary subcriterion descending from Gr.

Consequently, the partial concordance index is defined as:
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Cr(a, b) =
∑

t∈E(Gr)

φt(a, b) × kt =
∑

t∈E(Gr)

ψt(a, b) (1)

where, traditionally, for each t ∈ E(Gr),

φt(a, b) =























1, if gt(a) ≥ gt(b) − qt,

gt(a)−[gt(b)−pt]
pt−qt

, if gt(b) − pt ≤ gt(a) < gt(b) − qt,

0, if gt(a) < gt(b) − pt.

(2)

φt(a, b) is a marginal concordance index, indicating to what extent elementary subcriterion gt, t ∈ E(Gr),

contributes to the concordance index Cr(a, b). In order to simplify calculations, and without loss of gener-

ality, we assume that the weights of elementary subcriteria sum up to one, i.e.
∑

t∈EL kt = 1.

Note 2.1. When comparing two alternatives a, b on a given elementary subcriterion, the zone between −pt

and −qt corresponds to hesitation between opting for indifference and preference. In order to take into

account this ambiguity, ELECTRE methods consider φt(a, b) being linear and non-decreasing functions with

respect to the difference gt(a)− gt(b). The assumption of linearity of functions φt(a, b) is only conventional

and it is not related in any case to the concept of intensity of preference. Moreover, according to [7], slight

changes of the form of φt(a, b) have no impact (apart from very particular cases) on the results.

Remark that Cr(a, b) ∈ [0,Kr], where Kr =
∑

t∈E(Gr)
kt, and Cr(a, b) = 0 if gt(a) ≤ gt(b) − pt, for all

t ∈ E(Gr) (b is strictly preferred to a on all elementary subcriteria descending from Gr), and Cr(a, b) = Kr

if gt(a) ≥ gt(b) − qt, for all t ∈ E(Gr) (a outranks b on all elementary subcriteria descending from Gr).

When r = 0, C0(a, b) ∈ [0, 1] because E(G0) = EL and thus K0 = 1.

In ELECTRE, the result of the concordance test concerning a pair of alternatives is positive when the

value of the concordance index is not smaller than a fixed concordance cutting level. In the hierarchical

extension of ELECTRE, we admit one concordance cutting level λr for each criterion/subcriterion Gr with

r ∈ IG \ EL, that is, we consider one concordance cutting level for each criterion/subcriterion except for

elementary subcriteria, such that:

• λs ∈ [Ks/2,Ks], for all s ∈ LBO,

• λr =

n(r)
∑

j=1

λ(r,j), for all r ∈ IG \ {LBO ∪ EL} .

In particular, the first condition means that each concordance cutting level λs, s ∈ LBO, is bounded

between the half-sum and the sum of the weights of elementary subcriteria descending from Gs; the second
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condition means that the concordance cutting level of a criterion/subcriterion Gr, is equal to the sum of

the concordance cutting levels of subcriteria G(r,j), j = 1, . . . , n(r), at the level immediately below; we add

this condition in order to avoid the case where an alternative a outranks an alternative b with respect to all

subcriteria G(r,1), . . . , G(r,n(r)) from the level immediately below Gr, but a does not outrank b with respect

to criterion/subcriterion Gr. For example, it is obvious that if student s1 outranks student s2 with respect

to Algebra and Analysis, being immediate subcriteria of Mathematics, then s1 outranks s2 also with respect

to Mathematics.

Note 2.2. Remark that the two above conditions ensure that:

λr ∈

[

Kr

2
,Kr

]

, for all r ∈ IG \ EL.

This implies that not only the concordance cutting level of criteria from the last but one level of the hierarchy,

but all concordance cutting levels λr, r ∈ IG \ EL, are constrained between the half-sum and the sum of

weights of elementary subcriteria descending from Gr.

Note 2.3. In case the DM is not confident in providing a concordance cutting level for each criterion

belonging to the last but one level of the hierarchy, (s)he could give another information regarding them.

In fact, (s)he could state that each concordance cutting level λr, r ∈ IG \ EL, should be equal to a certain

percentage of the sum of weights of the elementary subcriteria descending from criterion Gr. For example,

if the DM declared that the concordance cutting levels should be equal to 70% of the relative weights of

elementary subcriteria descending from the corresponding criteron, it would give λr = 0.7 ×
∑

t∈E(Gr)
kt. It

is easy to observe that also in this case λr =
∑n(r)

j=1 λ(r,j) for all r ∈ IG \ {LBO ∪ EL}.

The result of the concordance test for a pair (a, b) ∈ B is positive if Cr(a, b) ≥ λr. Once the result of the

concordance test has been positive, one can pass to the non-discordance test. Its result is positive for the

pair (a, b) ∈ B, unless “a is significantly worse than b” on at least one elementary subcriterion descending

from Gr, i.e. if gt(b) − gt(a) ≥ vt for some t ∈ E(Gr).

Remark that, if we consider r = 0 then this procedure boils down to the classical ELECTRE method in

which all evaluation criteria are considered at the same level.

Summing up, for each criterion/subcriterion Gr, with r ∈ IG \ EL, and for each a, b ∈ A, we have:

aSrb⇔ Cr(a, b) ≥ λr, and gt(b) − gt(a) < vt, for all t ∈ E(Gr).

In the following Proposition we show two fundamental properties of hierarchical outranking:

Proposition 2.1.
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1. Given two alternatives a, b ∈ A, and r ∈ IG \ (LBO ∪ EL), such that

aS(r,j)b, for all j = 1, . . . , n(r),

then aSrb,

2. Given two alternatives a, b ∈ A, and r ∈ IG \ (LBO ∪ EL), such that

not(aS(r,j)b), for all j = 1, . . . , n(r),

then not(aSrb).

Proof. See Appendix A.

Note 2.4. Until now, we have applied the concepts of the hierarchy of criteria to one specific ELECTRE

method that is the ELECTRE IS method. The Multiple Criteria Hierarchy Process (MCHP) can be applied

also to other ELECTRE methods, including the most popular ELECTRE III method. ELECTRE III builds,

for each couple of alternatives (a, b) ∈ B, the credibility index

ρ(a, b) = C(a, b)
∏

{j:dj(a,b)>C(a,b)}

1 − dj(a, b)

1 − C(a, b)

where for each criterion gj ,

dj(a, b) =























1, if gj(a) ≤ gj(b) − vj,

gj(a)−[gj(b)−pj ]
vj−pj

, if gj(b) − vj < gj(a) < gj(b) − pj,

0, if gj(a) ≥ gj(b) − pj.

In MCHP, for each criterion Gr with r ∈ IG \ EL, we can define the following credibility index

ρr(a, b) = Cr(a, b)
∏

{t∈E(Gr) : dt(a,b)>Cr(a,b)}

1 − dt(a, b)

1 − Cr(a, b)

where dt(a, b) is defined equivalently to dj(a, b) for each elementary subcriterion gt, t ∈ EL.

From the definition of ρr(a, b) it follows that if none of the elementary subcriteria descending from Gr

opposes veto to the outranking of a over b on criterion Gr (that is dr(a, b) = 0 for all t ∈ E(Gr)), then

ρr(a, b) = Cr(a, b); if some elementary subcriterion descending from Gr opposes the veto to the outranking

of a over b with respect to criterion Gr (that is there exists at least one elementary subcriterion gt, with
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t ∈ E(Gr), such that dt(a, b) = 1), then ρr(a, b) = 0 and in all other cases the credibility index ρr(a, b) is

lower than the concordance index Cr(a, b).

3 ROR applied to Hierarchical ELECTRE

3.1 Hierarchical ELECTREGKMS

The only information the DM can obtain from the evaluations of alternatives with respect to the considered

criteria is the dominance relation. In general, information carried by the dominance relation is very poor,

and thus, in order to arrive to a final decision which would be concordant with the value system of the DM, it

is useful to take into account some preference information provided by the DM. This preference information

can be obtained in either direct or indirect way: if the way is direct, then the DM provides precise values or

interval of values for the parameters present in the model, and if the way is indirect, then the DM is invited

to provide preference information from which the parameters of the model can be inferred.

In this paper, we use a mix of both ways in order to infer the parameters of the model. We suppose

that, considering a multiple criteria choice or ranking problem, the DM can provide preference information

of two types:

• pairwise comparisons of some reference alternatives from set AR ⊆ A, stating the truth or falsity of

outranking relation aSrb, with r ∈ IG \ EL and a, b ∈ AR (in the following BR = AR ×AR),

• information regarding the indifference and preference thresholds qt and pt for each elementary subcri-

terion gt, t ∈ EL and information regarding weights kt for some elementary subcriterion gt, t ∈ EL.

Regarding the direct preference information, the DM can provide intervals of possible values [qt,∗, q
∗
t ] and

[pt,∗, p
∗
t ] for each indifference and preference threshold qt, pt, t ∈ EL, where qt,∗ and q∗t are, respectively, the

smallest and the greatest value of the indifference threshold, and pt,∗ and p∗t are, respectively, the smallest

and the greatest value of the preference threshold allowed by the DM.

Besides, we assume that the DM could give information on the weight kt of some elementary subcrite-

rion providing interval of possible values [kt,∗, k
∗
t ], where kt,∗ and k∗t are, respectively, the smallest and the

greatest value of the weights allowed by the DM, or providing pairwise comparison between the elementary

subcriteria of the type: “elementary subcriterion gt1 is more important than elemenatry subcriterion gt2” or

“elementary subcriteria gt1 and gt2 are equally important” that are translated from the constraints kt1 > kt2

and kt1 = kt2 respectively.

If the DM cannot provide intervals of indifference and preference threshold values for an elementary subcri-

terion gt, then (s)he has to indicate at least one couple of reference alternatives a, b ∈ AR ⊆ A for which

13



the difference between gt(a) and gt(b) is non-significant for the DM (a ∼t b), and at least one couple of

reference alternatives a, b for which the difference between gt(a) and gt(b) is significant for the DM (a ≻t b).

We denote by EL1 and EL2 the subsets of EL (such that EL1 ∪ EL2 = EL) containing indices of elemen-

tary subcriteria for which the DM provides information about the thresholds in a direct or indirect way,

respectively.

In order to ensure the consistency of the above thresholds, the following constraints need to be satisfied:

• qt,∗ ≤ q∗t , pt,∗ ≤ p∗t and q∗t ≤ pt,∗, for all t ∈ EL1,

• |gt(a) − gt(b)| < gt(c) − gt(d), if a ∼t b and c ≻t d, for all t ∈ EL2,

• p∗t should be not greater than βt − αt, t ∈ EL1, where αt = mina∈A gt(a), and βt = maxa∈A gt(a).

We call compatible model, a set of parameters (thus variables ψt(a, b) for each pair of alternatives (a, b) ∈

B and for each elementary subcriterion gt, t ∈ EL, veto thresholds vt for all t ∈ EL, and concordance

cutting levels λs for all s ∈ LBO) which restore the preference information provided by the DM and thus

satisfy the following set of constraints (see [9] for a similar formulation in a non-hierarchical case, and

Appendix B for a detailed description of the constraints):

14



Pairwise comparison stating aSrb or not(aSrb):

Cr(a, b) =
∑

t∈E(Gr)
ψt(a, b) ≥ λr and gt(b) − gt(a) + ε ≤ vt, t ∈ E(Gr),

if aSrb, for all (a, b) ∈ BR,

Cr(a, b) =
∑

t∈E(Gr)
ψt(a, b) + ε ≤ λr +Mr

0 (a, b) and gt(b) − gt(a) ≥ vt − δrMt(a, b),

if not(aSrb), for (a, b) ∈ BR,

Mr
0 (a, b),Mt(a, b) ∈ {0, 1}, for all t ∈ E(Gr), M

r
0 (a, b) +

∑

t∈E(Gr)
Mt(a, b) ≤ |E(Gr)| ,

δr ≥ maxt∈E(Gr){βt − αt} where αt = min
a∈A

gt(a) and βt = max
a∈A

gt(a).

Concordance cutting levels and values of inter-criteria parameters:

λs ≥
∑

t∈E(Gs)

ψt(x
∗
t , xt,∗)

2
, and λs ≤

∑

t∈E(Gs)

ψt(x
∗
t , xt,∗), for all s ∈ LBO,

λr =

n(r)
∑

j=1

λ(r,j), for all r ∈ IG \ {LBO ∪ EL} ,

∑

t∈EL

ψt(x
∗
t , xt,∗) = 1, where xt,∗, x

∗
t ∈ A for all t ∈ EL : gt(x

∗
t) = βt, and gt(xt,∗) = αt,

vt ≥ p∗t + ε, t ∈ EL,

vt ≥ gt(b) − gt(a) + ε if a ∼t b, and gt(a) ≤ gt(b), t ∈ EL2, for all (a, b) ∈ B,

Values of marginal concordance indices conditioned by intra-criterion preference information,

for all (a, b) ∈ B:

kt,∗ ≤ ψt(x
∗
t , xt,∗) ≤ k∗t , t ∈ EL,

ψt1(x∗t1 , xt1,∗) ≥ ψt2(x∗t2 , xt2,∗) + ε, if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

ψt1(x∗t1 , xt1,∗) = ψt2(x∗t2 , xt2,∗), if elementary subcriteria gt1 and gt2 are

equally important, t1, t2 ∈ EL,

ψt(a, b) = 0 if gt(a) − gt(b) ≤ −p∗t , t ∈ EL1,

ψt(a, b) ≥ ε if gt(a) − gt(b) > −pt,∗, t ∈ EL1,

ψt(a, b) = ψt(x
∗
t , xt,∗) if gt(a) − gt(b) ≥ −qt,∗, t ∈ EL1,

ψt(a, b) + ε ≤ ψt(x
∗
t , xt,∗) if gt(a) − gt(b) < −q∗t , t ∈ EL1,

ψt(a, b) = ψt(b, a) = ψt(x
∗
t , xt,∗) if a ∼t b, t ∈ EL2

ψt(a, b) = 0 if b ≻t a, t ∈ EL2.

Monotonicity of the functions of marginal concordance indices, for all a, b, c, d ∈ A, t ∈ EL:

ψt(a, b) ≥ ψt(c, d) if gt(a) − gt(b) > gt(c) − gt(d),

ψt(a, b) = ψt(c, d) if gt(a) − gt(b) = gt(c) − gt(d),
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EAR

The whole set of constraints EAR

has the form of 0-1 Mixed Integer Linear Program (MILP), as shown

above. If EAR

is feasible and ε∗ = max ε, subject to EAR

, is greater than 0, then there exists at least one
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outranking model compatible with the preference information.

In general, there may exist more than one outranking model compatible with preference information

provided by the DM; each one of the compatible models restores the preference information concerning

the reference alternatives provided by the DM, but it can compare in a different way the other couples

of alternatives not present in the preference information provided by the DM. For this reason, ROR takes

into account all outranking models compatible with preference information provided by the DM simulta-

neously. In the ROR context, in case of the hierarchy of criteria applied to ELECTRE, and considering a

criterion/subcriterion Gr of the hierarchy, with r ∈ IG \ EL and two alternatives a, b ∈ A, we can give the

following definitions:

Definition 3.1.

• a necessarily outranks b with respect to Gr, and we write aSN
r b, if a outranks b with respect to Gr, for

all compatible models,

• a possibly outranks b with respect to Gr, and we write aSP
r b, if a outranks b with respect to Gr, for at

least one compatible model,

• a necessarily does not outrank b with respect to Gr, and we write aSCN
r b, if a does not outrank b with

respect to Gr, for all compatible models,

• a possibly does not outrank b with respect to Gr, and we write aSCP
r b, if a does not outrank b with

respect to Gr, for at least one compatible model.

Remark that, in case of r = 0, the necessary and possible outranking relations SN
r and SP

r are the same

as necessary and possible outranking relations defined in [9], for a flat (non-hierarchical) structure of the set

of criteria.

Given a pair of alternatives (a, b) ∈ B, and a criterion Gr ∈ G with r ∈ IG \EL, necessary and possible

outranking relations (%N
r , %P

r ) can be computed as follows.

• To check whether aSN
r b, we assume that a does not outrank b with respect to criterion Gr (not(aSrb)),

and we add the corresponding constraints to set EAR

, getting the set of constraints EN
r (a, b) shown

below. Then, we verify whether not(aSrb) is possible in the set of all outranking models compatible

with the previously provided preference information.
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EAR

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) + ε ≤ λr +Mr
0 (a, b) and gt(b) − gt(a) ≥ vt − δrMt(a, b),

Mr
0 (a, b) +

∑

t∈E(Gr)

Mt(a, b) ≤ |E(Gr)|, M
r
0 (a, b),Mt(a, b) ∈ {0, 1}, t ∈ E(Gr).
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EN
r (a, b)

We say that:

aSN
r b if EN

r (a, b) is infeasible or εNr (a, b) ≤ 0 where εNr (a, b) = max ε, subject to EN
r (a, b).

• To check whether aSP
r b, we assume that a outranks b with respect to criterion Gr (aSrb), and we add

the corresponding constraints to the set EAR

, getting the set of constraints EP
r (a, b) shown below.

Then, we verify whether aSrb is possible in the set of all outranking models compatible with the

previously provided preference information.

EAR

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) ≥ λr and gt(b) − gt(a) + ε ≤ vt, t ∈ E(Gr)


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EP
r (a, b)

We say that:

aSP
r b if EP

r (a, b) is feasible and εPr (a, b) > 0 where εPr (a, b) = max ε, subject to EP
r (a, b).

Note 3.1. It is worth noting that the set of constraints EAR

defines a set of variables ψt(a, b), t ∈ EL,

(a, b) ∈ B, being non-decreasing functions with respect to the difference gt(a) − gt(b), differently from the

functions φt(a, b) which are non-decreasing and linear. This is due to the fact that indifference and preference

thresholds, as well as the veto thresholds, are not directly provided by the DM. In this situation, taking

thresholds and weights as unknown variables, makes that the optimization problems to be solved in ROR are

no more linear programming ones. As there are many optimization problems to be solved in ROR, the whole

approach would be practically non-tractable.

If the DM would be able to provide all the thresholds considered in the model (indifference, preference and

veto), then linear programming could be applied again within a simplified model of ROR, considering as

variables only the weights kt, t ∈ EL, and the concordance cutting levels λs, s ∈ LBO. In this case, the

feasibility constraints of the optimization problems considered in ROR can be simply modified to the following

form:
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Pairwise comparison stating aSrb or not(aSrb):

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) ≥ λr, if aSrb, for (a, b) ∈ BR,

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) + ε ≤ λr if not(aSrb), for (a, b) ∈ BR,

Concordance cutting levels and values of inter-criteria parameters:

λs ≥
∑

t∈E(Gs)

kt
2
, and λs ≤

∑

t∈E(Gs)

kt, for all s ∈ LBO,

∑

t∈EL

kt = 1,

kt,∗ ≤ kt ≤ k∗t , t ∈ EL,

kt1 ≥ kt2 + ε, if elementary subcriterion gt1 is more important than

elementary subcriterion gt2 , t1, t2 ∈ EL,

kt1 = kt2 , if elementary subcriteria gt1 and gt2 are

equally important, t1, t2 ∈ EL,
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EAR

EAR

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) + ε ≤ λr,


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EN
r (a, b),

EAR

Cr(a, b) =
∑

t∈E(Gr)

kt · φt(a, b) ≥ λr,
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EP
r (a, b)

The linearity and simplicity of the above formulation is concordant with reasoning of Note 2.1.

Remark that the preference information of the type aSrb and not(aSrb) provided by the DM involves the

concordance test only, because the veto thresholds were given before by the DM, and thus not (aSrb) could

not reasonably be caused by discordance. Indeed, it is reasonable to assume that the DM stating that aSrb

or not(aSrb) already knows that gt(b) − gt(a) < vt for all t ∈ E(Gr).

3.2 Properties of necessary and possible outranking relations

Proposition 3.1.

1. For all r ∈ IG \ EL, SN
r ⊆ SP

r ,

2. For all r ∈ IG \ EL, SP
r and SN

r are reflexive,

3. For all a, b ∈ A, for all r ∈ IG \ EL, aSN
r b⇔ not(aSCP

r b),
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4. For all a, b ∈ A, for all r ∈ IG \ EL, aSP
r b⇔ not(aSCN

r b),

5. SCN
r ⊆ SCP

r , for all r ∈ IG \ EL,

6. For all r ∈ IG \ EL, SCP
r and SCN

r are irreflexive.

Proof. See Appendix A.

Proposition 3.2.

1. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that

aSN
(r,j)b for all j = 1, . . . , n(r),

then aSN
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO) , such that:

α) aSN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSP
(r,w)b,

then aSP
r b,

3. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that

aSCN
(r,j)b for all j = 1, . . . , n(r),

then aSCN
r b.

4. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

α) aSCN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSCP
(r,w)b,

then aSCP
r b.

Proof. See Appendix A.
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3.3 An illustrative example

In this section, we present an illustrative example in order to show how to use the ELECTRE method and

the ELECTREGKMS method in case of the hierarchical structure of criteria. At first, we describe how to

use ELECTRE method in case of availability of full preference information composed of the weights, the

preference, indifference and veto thresholds, and about the concordance cutting levels.

Let us suppose that a university department of natural sciences, like every year, has a possibility of funding

a scholarship for one of its best students. As five best students passed to the final selection, the Dean has to

choose from among them one laureate. These five finalists are evaluated with respect to two macro-subjects:

Mathematics and Chemistry. Both these macro-subjects present a hierarchical structure; on one hand,

Mathematics has two sub-subjects: Algebra and Analysis, and each one of these has other two sub-subjects:

Group Theory and Linear Algebra are sub-subjects of Algebra, while Calculus and Functional Analysis

are sub-subjects of Analysis. On the other hand, Chemistry has two sub-subjects: Analytical Chemistry

and Organic Chemistry, and each one of them has two sub-subjects: Analytical Chemistry I and Applied

Analytical Chemistry are sub-subjects of Analytical Chemistry, while Organic Chemistry I and Organic

Chemistry II are sub-subjects of Organic Chemistry. The described hierarchy of criteria is shown in Figure

5.

Figure 5: Hierarchical evaluation of students

G(0) λ(0) = 0.6499

G(1)

Mathematics

λ(1) = 0.3412
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The eight sub-subjects are thus the elementary subcriteria of the considered hierarchical structure and

the evaluations of the students with respect to the eight sub-subjects are shown in Table 1. The evaluation

of students on these elementary subcriteria is included between 18 and 30. Weights, indifference, preference
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and veto thresholds are shown in Table 2(a).

Table 1: Evaluations of students on elementary subcriteria

Student g(1,1,1) g(1,1,2) g(1,2,1) g(1,2,2) g(2,1,1) g(2,1,2) g(2,2,1) g(2,2,2)
s1 28 22 27 21 29 21 28 20
s2 20 23 19 22 30 20 29 19
s3 29 21 28 20 18 24 18 23
s4 30 20 29 19 28 22 27 21
s5 18 24 18 23 20 23 19 22

The Dean decides to provide information regarding the concordance cutting levels in the way explained

in the Note 2.3. Then, (s)he states that each concordance cutting level λs, s ∈ LBO, should be equal to 65%

of the sum of the weights of elementary subcriteria descending from Gs. In consequence, for each criterion

of the last but one level the values of concordance cutting levels are: λ(1,1) = 0.1625, λ(1,2) = 0.1787,

λ(2,1) = 0.1462 and λ(2,2) = 0.1625 as reported in Table 2(b).

Table 2: ELECTRE parameters in case of the hierarchy of criteria

(a) Weights and thresholds

Elementary subcriterion, gt kt qt pt vt
Group Theory 0.1 1 4 10
Linear Algebra 0.15 1 4 10

Calculus 0.125 1 4 10
Functional Analysis 0.15 1 4 10

Analytical Chemistry I 0.1 2 5 10
App. Anal. Chemistry 0.125 2 5 10
Organic Chemistry I 0.15 2 5 10
Organic Chemistry II 0.1 2 5 10

(b) Concordance cutting levels

Criterion, Gr λr
Algebra 0.1625
Analysis 0.1787

Analytical Chemistry 0.1462
Organic Chemistry 0.1625

Following the procedure explained in section 2.2, we obtain the outranking relations shown in Table 3,

where:

S(r)(s1, s2) =







1 if s1 outranks s2 with respect to criterion Gr,

0 if s1 does not outrank s2 with respect to criterion Gr.

In Table 3, we obtain the “overall outranking relation”, that is the outranking relation with respect to the

totality of criteria, as well as “partial outranking relations”, that is outranking relations with respect to a

particular subcriterion at a given level of the hierarchy.

Remark that using the classical ELECTRE method, we obtain the overall outranking relation only because

all criteria are considered at the same level. In consequence, using the classical ELECTRE method, we

could learn that student s2 does not outrank student s4 with respect to the totality of criteria, but we could
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Table 3: Outranking relations at particular levels of the hierarchy of criteria

S(0) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 0 0 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 0 0 1

S(1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(1,1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(1,2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 0 1 0 0 1
s3 1 1 1 1 0
s4 1 0 1 1 0
s5 0 1 0 0 1

S(2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 1 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

S(2,1) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 0 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

(2,2) s1 s2 s3 s4 s5
s1 1 1 1 1 1
s2 1 1 1 1 1
s3 0 0 1 0 1
s4 1 1 1 1 1
s5 0 0 1 0 1

not know that student s2 outranks student s4 with respect to Chemistry, Analytical Chemistry and Organic

Chemistry.

According to point 1 of Proposition 2.1, we observe that if student s1 outranks student s5 with respect to

Mathematics (G(1)) and Chemistry (G(2)), then s1 outranks s5 with respect to the totality of criteria (G(0)),

but the contrary is not true; in fact, for example, student s2 outranks student s3 with respect to Chemistry,

but at the same time student s2 does not outrank student s3 with respect to Analytical Chemistry (G(2,1)),

being a sub-criterion descending from Chemistry.

Now, let us suppose that the Dean cannot provide the full preference information regarding the param-

eters of the Hierarchical ELECTRE method. The only information the Dean can get from the evaluation

table is the dominance relation, but in this particular case there is no student dominating another student.

Thus, the Dean decides to use the Hierarchical ELECTREGKMS method. In fact, (s)he realizes that using

this procedure, (s)he has two advantages: (s)he can give finer preference information, taking into account

subsets of criteria at different levels of the hierarchy, and at the same time, (s)he can get more informa-

tion from the partial necessary and possible outranking relations. In order to use this methodology, (s)he

provides the thresholds shown in Table 4.

Looking at the evaluations of students shown in Table 1, the Dean specifies the following pairwise

comparisons:

• student s4 outranks student s2 with respect to Mathematics (s4S(1)s2),
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Table 4: Indifference and preference thresholds provided by the Dean

Elementary subcriterion, gt qt,∗ q∗t pt,∗ p∗t
Group Theory 1 2 3 4
Linear Algebra 1 2 3 4

Calculus 1 2 3 4
Functions Theory 1 2 3 4

Analytical Chemistry I 1 2 3 4
App. Anal. Chemistry 1 2 3 4
Organic Chemistry I 1 2 3 4
Organic Chemistry II 1 2 3 4

• student s5 does not outrank student s1 with respect to Organic Chemistry (not(s5S(2,2)s1)).

These two pieces of information, are translated into the following constraints regarding variables of the

ordinal regression problem:

• s4S(1)s2 is translated into:

1. ψ(1,1,1)(s4, s1) + ψ(1,1,2)(s4, s1) + ψ(1,2,1)(s4, s1) + ψ(1,2,2)(s4, s1) ≥ λ(1,1) + λ(1,2),

2. v(1,1,1) ≥ g(1,1,1)(s2) − g(1,1,1)(s4) + ε = −10 + ε,

3. v(1,1,2) ≥ g(1,1,2)(s2) − g(1,1,2)(s4) + ε = 3 + ε,

4. v(1,2,1) ≥ g(1,2,1)(s2) − g(1,2,1)(s4) + ε = −10 + ε,

5. v(1,2,2) ≥ g(1,2,2)(s2) − g(1,2,2)(s4) + ε = 3 + ε.

• not(s5S(2,2)s1) is translated into:

1. ψ(2,2,1)(s5, s1) + ψ(2,2,2)(s5, s1) + ε ≤ λ(2,2) +M
(2,2)
0 (s5, s1),

2. v(2,2,1) − δM(2,2,1)(5, 1) ≤ g(2,2,1)(s1) − g(2,2,1)(s5) = 9,

3. v(2,2,2) − δM(2,2,2)(5, 1) ≤ g(2,2,2)(s1) − g(2,2,2)(s5) = −2,

4. M
(2,2)
0 (s5, s1) +M(2,2,1)(s5, s1) +M(2,2,2)(s5, s1) ≤ 2,

5. M
(2,2)
0 (s5, s1),M(2,2,1)(s5, s1),M(2,2,2)(s5, s1) ∈ {0, 1} .

The necessary outranking relation resulting from application of all sets of preference model parameters

compatible with the given preference information on the set of five students is presented in Table 5.

Looking at Table 5, we can observe that with respect to the totality of criteria, the only information

the Dean obtains is that student s1 necessarily outranks student s2 and student s4 necessarily outranks

student s1. But, when looking at the subcriteria of the hierarchy, the Dean could observe some facts

which cannot be seen when using the classic ELECTREGKMS designed for a flat structure of criteria.
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Table 5: Necessary outranking relation obtained from application of the hierarchical version of
ELECTREGKMS (1 means true, and 0 means false)

SN
(0) s1 s2 s3 s4 s5

s1 1 1 0 0 0
s2 0 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 0
s5 0 0 0 0 1

SN
(1) s1 s2 s3 s4 s5

s1 1 1 1 0 1
s2 0 1 0 0 1
s3 1 1 1 1 1
s4 1 1 1 1 0
s5 0 0 0 0 1

SN
(1,1) s1 s2 s3 s4 s5

s1 1 1 1 0 0
s2 0 1 0 0 1
s3 1 0 1 1 0
s4 0 0 1 1 0
s5 0 0 0 0 1

SN
(1,2) s1 s2 s3 s4 s5

s1 1 1 1 0 0
s2 0 1 0 0 1
s3 1 0 1 1 0
s4 0 0 1 1 0
s5 0 1 0 0 1

SN
(2) s1 s2 s3 s4 s5

s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 1
s5 0 0 1 0 1

SN
(2,1) s1 s2 s3 s4 s5

s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 0
s4 1 0 0 1 1
s5 0 0 1 0 1

SN
(2,2) s1 s2 s3 s4 s5

s1 1 1 0 1 0
s2 1 1 0 0 0
s3 0 0 1 0 1
s4 1 0 0 1 1
s5 0 0 1 0 1

According to Proposition 3.2, from the necessary outranking of student s4 over student s1 with respect to

Mathematics and Chemistry, follows the necessary outranking of student s4 over student s1 with respect

to the totality of criteria, but at the same time, while student s4 necessarily outranks student s1 with

respect to Mathematics, student s4 does not necessarily outrank student s1 with respect to Algebra being

a subcriterion of Mathematics at the level immediately below.

4 Handling the hierarchy of criteria in PROMETHEE methods

In this section, we describe the extension of another outranking method, called PROMETHEE, to the

hierarchy of criteria (for a detailed description of PROMETHEE methods in case of a flat structure of

criteria see [2]).

In the case of the hierarchy of criteria, PROMETHEE methods compare couples of alternatives with respect

to criteria and subcriteria of the hierarchical family of criteria in order to construct an outranking relation

in the set of alternatives. This construction involves a few parameters, that is, the weights of elementary

subcriteria, as well as indifference and preference thresholds for differences of evaluations of couples of

alternatives on each elementary subcriterion. The preference of the DM regarding a couple of alternatives

(a, b) with respect to elementary subcriterion gt depends on the difference between gt(a) and gt(b) and for

this reason the preference of a over b can be represented by a function Pt(a, b), increasing with dt(a, b) =

gt(a) − gt(b). In [2], there are given six different types of functions Pt(a, b), and each one of them involves
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from zero to three parameters. Let us suppose, there are m evaluation criteria and n alternatives in set

A. After the DM has decided which function Pt is expressing the best her/his preferences with respect to

elementary subcriterion gt, and after introducing the weights kt for each elementary subcriterion gt, t ∈ EL,

one can calculate for each couple of alternatives (a, b) and for each criterion Gr, r ∈ IG , the following indices:

• the partial aggregate preference indices:

πr(a, b) =















krPr(a, b) if r ∈ EL,
∑

t∈E(Gr)

ktPt(a, b) otherwise,

representing, the degree of preference of a over b, with respect to criterion/subcriterion Gr;

• the partial positive, negative, and net outranking flows:

Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x), Φ−
r (a) =

1

n− 1

∑

x∈A\{a}

πr(x, a), Φr(a) = Φ+
r (a) − Φ−

r (a)

representing respectively how strongly alternative a outranks all other alternatives of A on Gr, how

strongly alternatives of A outrank a on Gr, and a balance between the two previous flows.

In this case, we can build preference P I
r , indifference IIr and incomparability RI

r relations of PROMETHEE

I as follows:



























aP I
r b iff Φ+

r (a) ≥ Φ+
r (b), Φ−

r (a) ≤ Φ−
r (b), and at least one of the two inequalities is strict,

aIIr b iff Φ+
r (a) = Φ+

r (b) and Φ−
r (a) = Φ−

r (b),

aRI
rb otherwise

Moreover, preference
(

P II
r

)

and indifference
(

IIIr
)

relations of PROMETHEE II can be defined as follows:

aP II
r b iff Φr(a) > Φr(b), while aIIIr b iff Φr(a) = Φr(b).

Note 4.1. Remark that in case r = 0, we obtain the indices and relations of the classical PROMETHEE

methods for a flat structure of criteria.

In case of the hierarchy of criteria, we can prove the following Propositions:

Proposition 4.1. For each a, b ∈ A, and for each Gr ∈ G, r ∈ IG \ EL, we have:
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1. πr(a, b) =

n(r)
∑

j=1

π(r,j)(a, b)

2. Φ+
r (a) =

n(r)
∑

j=1

Φ+
(r,j)(a)

3. Φ−
r (a) =

n(r)
∑

j=1

Φ−
(r,j)(a)

4. Φr(a) =

n(r)
∑

j=1

Φ(r,j)(a)

Proof. See Appendix A.

Proposition 4.2.

1. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aP I
(r,j)b for all j = 1, . . . , n(r),

then aP I
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that:

α) {C1, C2} is a partition of the set {1, . . . , n(r)} of indices of subcriteria of Gr in the subsequent

level,

β) aP I
(r,j)b, for all j ∈ C1,

γ) aII(r,j)b, for all j ∈ C2,

then aP I
r b,

3. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aII(r,j)b for all j = 1, . . . , n(r),

then aIIr b,

Proof. See Appendix A.

Proposition 4.3.
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1. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aP II
(r,j)b for all j = 1, . . . , n(r),

then aP II
r b,

2. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that:

α) {C1, C2} is a partition of the set {1, . . . , n(r)} of indices of subcriteria of Gr in the subsequent

level,

β) aP II
(r,j)b, for all j ∈ C1,

γ) aIII(r,j)b, for all j ∈ C2,

then aP II
r b,

3. Given two alternatives a, b ∈ A and r ∈ IG \ EL, such that

aIII(r,j)b for all j = 1, . . . , n(r),

then aIIIr b,

Proof. See Appendix A.

5 ROR applied to Hierarchical PROMETHEE

5.1 Hierarchical PROMETHEEGKS

In this section we extend the principles of PROMETHEEGKS to the case of the hierarchy of criteria. As

stated already above, the only information the DM can obtain from the evaluation matrix is the dominance

relation in the set of alternatives. In general, this information is very poor and leaves many alternatives in-

comparable. To enrich this information, the DM has to introduce some preference information which reveals

her/his value system. In this context, we take into account both PROMETHEE I and PROMETHEE II

methods, noting that the new Hierarchical PROMETHEE method, so obtained, contains PROMETHEEGKS

[13], as a particular case.

Given a subset AR of A, whose elements are called reference alternatives, and a criterion Gr, r ∈ IG \ EL,

we suppose that the DM can give two types of preference information regarding a, b ∈ AR (we consider

BR = AR ×AR):
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• local relations (denoted by a %πr
b, a ≻πr

b, and a ∼πr
b), comparing directly the performance of a

and b on criterion Gr, and these comparisons are translated into constraints regarding πr(a, b) and

πr(b, a),

• global relations (denoted by a %Φr
b, a ≻Φr

b, and a ∼Φr
b), comparing a and b to all other alternatives,

taking into account their outranking flows, Φ+
r (a), Φ+

r (b), Φ−
r (a) and Φ−

r (b), in case of PROMETHEE

I or Φr(a) and Φr(b) in case of PROMETHEE II.

As in the Hierarchical ELECTREGKMS method, we assume moreover that the DM can give for each ele-

mentary subcriterion information regarding indifference and preference thresholds directly, that is provide

intervals of possible values, or indirectly, that is provide information on some couples of alternatives (s)he

considers indifferent or not (EL1 and EL2 represent the sets of criteria for which the DM gives information

on the indifference and preference thresholds in a direct or indirect way, respectively); besides, analogously

to Hierarchical ELECTREGKMS , we assume that the DM could provide some information regarding the

weights of some elementary subcriterion (for a more detailed description of these preference information and

for the consistency constraints on the indifference and preference thresholds see Appendix B).

Given this preference information, a compatible outranking model is a set of preference indices πt(a, b),

(a, b) ∈ B, t ∈ EL, restoring the preference information provided by the DM and satisfying so the following

set of constraints (see [13] for a similar formulation in a non-hierarchical case and Appendix B for a detailed

description of these constraints):
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Pairwise comparisons (local relations), for (a, b) ∈ BR:

πr(a, b) ≥ πr(b, a) if a %πr
b,

πr(a, b) ≥ πr(b, a) + ε if a ≻πr
b,

πr(a, b) = πr(b, a) if a ∼πr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE II, for (a, b) ∈ BR:

Φr(a) ≥ Φr(b) if a %Φr
b,

Φr(a) ≥ Φr(b) + ε if a ≻Φr
b,

Φr(a) = Φr(b) if a ∼Φr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE I:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b) if a %Φr
b, for (a, b) ∈ BR,

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b) and

Φ+
r (a) − Φ−

r (a) ≥ Φ+
r (b) − Φ−

r (b) + ε

}

if a ≻Φr
b, for (a, b) ∈ BR,

Φ+
r (a) = Φ+

r (b) and Φ−
r (a) = Φ−

r (b) if a ∼Φr
b, for (a, b) ∈ BR.

Values of inter-criteria parameters:
∑

t∈EL

πt(x
∗
t , xt,∗) = 1, where xt,∗, x

∗
t ∈ A for all t ∈ EL : gt(x

∗
t) = max

a∈A
gt(a), and gt(xt,∗) = min

a∈A
gt(a),

Values of marginal preference indices conditioned by intra-criterion preference information,
for all (a, b) ∈ B:

kt,∗ ≤ πt(x
∗
t , xt,∗) ≤ k∗t , t ∈ EL,

πt1(x∗t1 , xt1,∗) ≥ πt2(x∗t2 , xt2,∗) + ε, if elementary subcriterion gt1 is more important than
elementary subcriterion gt2 , t1, t2 ∈ EL,

πt1(x∗t1 , xt1,∗) = πt2(x∗t2 , xt2,∗), if elementary subcriteria gt1 and gt2
are equally important, t1, t2 ∈ EL,

πt(a, b) = 0 if gt(a) − gt(b) ≤ qt,∗, t ∈ EL1,

πt(a, b) ≥ ε if gt(a) − gt(b) > q∗t , t ∈ EL1,

πt(a, b) + ε ≤ πt(x
∗
t , xt,∗) if gt(a) − gt(b) < pt,∗, t ∈ EL1,

πt(a, b) = πt(x
∗
t , xt,∗) if gt(a) − gt(b) ≥ p∗t , t ∈ EL1,

πt(a, b) = 0, πt(b, a) = 0 if a ∼t b, t ∈ EL2,

πt(a, b) = πt(x
∗
t , xt,∗) if a ≻t b, t ∈ EL2.

Monotonicity of the functions of marginal preference indices, for all a, b, c, d ∈ A, t ∈ EL:

πt(a, b) ≥ πt(c, d) if gt(a) − gt(b) > gt(c) − gt(d),

πt(a, b) = πt(c, d) if gt(a) − gt(b) = gt(c) − gt(d).
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
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



EAR

If EAR

is feasible and ε∗ = max ε, subject to EAR

, is greater than 0, then there exists at least one

outranking model compatible with the preference information.
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Given a criterion/subcriterion Gr, r ∈ IG \EL, and two alternatives a, b ∈ A, we can give the following

definitions:

Definition 5.1.

• Given a compatible outranking model S exploited in the way of PROMETHEE I, we say a outranks b

with respect to Gr, and we write a %r b, if:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b).

• Given a compatible outranking model S exploited in the way of PROMETHEE II, we say that a outranks

b with respect to Gr, and we write a %r b, if:

Φr(a) ≥ Φr(b).

Note 5.1. Remark that given two alternatives a, b ∈ A, for each Gr ∈ IG \ EL, and for each compatible

outranking model S, if a outranks b with respect to criterion/subcriterion Gr in the sense of PROMETHEE

I, then a outranks b with respect to criterion/subcriterion Gr in the sense of PROMETHEE II.

In the ROR context, considering a criterion/subcriterion Gr, r ∈ IG \EL, and two alternatives a, b ∈ A,

we can give the following definitions:

Definition 5.2.

• a necessarily outranks b with respect to Gr, and we write a %N
r b, if a outranks b with respect to Gr,

for all compatible outranking models,

• a possibly outranks b with respect to Gr, and we write a %P
r b, if a outranks b with respect to Gr, for

at least one compatible outranking model.

Given a pair of alternatives (a, b) ∈ B, and a criterion/subcriterion Gr, r ∈ IG \ EL, necessary and

possible outranking relations (%N
r ,%

P
r ) can be computed as follows:

• To check whether a %N
r b, we assume that a does not outrank b with respect to Gr (not(a %r b)), and

we add the corresponding constraints to set EAR

shown below. Then, we verify whether not(a %r b)

is possible in the set of all outranking models compatible with the previously provided preference

information.
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EAR

if one verifies the truth of global outranking:

if exploited in the way of PROMETHEE II, then:

Φr(a) + ε ≤ Φr(b)

if exploited in the way of PROMETHEE I, then:

Φ+
r (a) + ε ≤ Φ+

r (b) + 2M0
r and Φ−

r (a) + 2M1
r ≥ Φ−

r (b) + ε

where Mr
i ∈ {0, 1}, i = 1, 2, and

∑1
i=0M

r
i ≤ 1

if one verifies the truth of local outranking:

πr(a, b) + ε ≤ πr(b, a)
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



EN
r (a, b)

We say that:

a %N b if EN
r (a, b) is infeasible or εNr (a, b) ≤ 0, where εNr (a, b) = max ε, subject to EN

r (a, b).

Observe that in EN
r (a, b), the binary variables M0

r and M1
r are used in order to deny the outranking

of a over b. In fact, a does not outrank b if Φ+
r (a) < Φ+

r (b) or Φ−
r (a) > Φ−

r (b). If M i
r = 0, i = 0, 1, then

the corresponding constraint opposes a veto to the outranking of a over b (in particular, if M0
r = 0 then

Φ+
r (a) < Φ+

r (b) while if M1
r = 0 then Φ−

r (a) > Φ−
r (b)); instead, if M i

r = 1, i = 0, 1, the corresponding

constraint is always verified reminding that Φ+
r (a) ∈ [0, 1] and Φ−

r (a) ∈ [0, 1] for all a ∈ A. Besides,

the constraint
∑1

i=0M
i
r ≤ 1 ensures that at least one of the two variables has to be equal to zero.

• To check whether a %P
r b, we assume that a outranks b with respect to Gr (a %r b), and add

corresponding constraints to the set EAR

shown below. Then, we verify whether a %r b is possible in

the set of all compatible outranking models.
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EAR

if one verifies the truth of global outranking:

if exploited in the way of PROMETHEE II, then:

Φr(a) ≥ Φr(b)

if exploited in the way of PROMETHEE I, then:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b)

if one verifies the truth of local outranking:

πr(a, b) ≥ πr(b, a)
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

EP
r (a, b)

We say that:

a %P
r b if EP

r (a, b) is feasible and εPr (a, b) > 0, where εPr (a, b) = max ε, subject to EP
r (a, b).

Note 5.2. The same observation made for ELECTRE about application of linear programming within ROR

is valid for PROMETHEE. More precisely, if the DM is able to give the marginal function Pt(a, b) and the

related thresholds, the ROR optimization problems can be formulated in terms of linear programming, taking

into account as variables the weights kt, t ∈ EL, only. This amounts to substitute the set of constraints EAR

with the following:
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Pairwise comparisons (local relations), for (a, b) ∈ BR:

πr(a, b) ≥ πr(b, a) if a %πr
b,

πr(a, b) ≥ πr(b, a) + ε if a ≻πr
b,

πr(a, b) = πr(b, a) if a ∼πr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE II, for (a, b) ∈ BR:

Φr(a) ≥ Φr(b) if a %Φr
b,

Φr(a) ≥ Φr(b) + ε if a ≻Φr
b,

Φr(a) = Φr(b) if a ∼Φr
b,

Pairwise comparisons (global relations), if the outranking model is exploited in the way
of PROMETHEE I:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b) if a %Φr
b, for (a, b) ∈ BR,

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b) and

Φ+
r (a) − Φ−

r (a) ≥ Φ+
r (b) − Φ−

r (b) + ε

}

if a ≻Φr
b, for (a, b) ∈ BR,

Φ+
r (a) = Φ+

r (b) and Φ−
r (a) = Φ−

r (b) if a ∼Φr
b, for (a, b) ∈ BR.

Values of marginal preference indices conditioned by intra-criterion preference information,
for all (a, b) ∈ B:

kt,∗ ≤ kt ≤ k∗t , t ∈ EL,

kt1 ≥ kt2 + ε, if elementary subcriterion gt1 is more important than
elementary subcriterion gt2 , t1, t2 ∈ EL,

kt1 = kt2 , if elementary subcriteria gt1 and gt2
are equally important, t1, t2 ∈ EL,






























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


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
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


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
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
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
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


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
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
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
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






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


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
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
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
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




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








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






























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























EAR

5.2 Properties of necessary and possible outranking relations

Proposition 5.1.

1. For all r ∈ IG \ EL, %N
r ⊆ %P

r ,

2. For all r ∈ IG \ EL, %P
r and %N

r are reflexive,

Proof. See Appendix A.

Proposition 5.2.

1. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

a %N
(r,j) b for all j = 1, . . . , n(r),

then a %N
r b.
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2. Given two alternatives a, b ∈ A and r ∈ IG \ (EL ∪ LBO), such that:

α) a %N
(r,j) b for all j = 1, . . . , n(r), j 6= w,

β) a %P
(r,w) b,

then a %P
r b.

Proof. See Appendix A.

5.3 An illustrative example

In this subsection we consider the same problem we have dealt with Hierarchical ELECTRE in subsection

3.3 using both PROMETHEE and PROMETHEEGKS methods extended to the case of a hierarchical family

of criteria.

At first, we suppose to have the same weights, as well as the same indifference and preference thresholds

as before: let us also choose for each elementary subcriterion gt, t ∈ EL, the following preference function

Pt(a, b), for any a, b ∈ A:

Pt(a, b) =























0 if gt(a) − gt(b) ≤ qt,

gt(a)−gt(b)−qt
pt−qt

if qt < gt(a) − gt(b) < pt,

1 if gt(a) − gt(b) ≥ pt.

Table 6: Preference relations obtained using Hierarchical PROMETHEE I

Comprehensively s1 s2 s3 s4 s5
s1 I P P P P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P−1 P P I P
s5 P−1 P R R I

Maths s1 s2 s3 s4 s5
s1 I P P P R
s2 P−1 I P−1 P−1 R
s3 P−1 P I R R
s4 P−1 P R I R
s5 R R R R I

Algebra s1 s2 s3 s4 s5
s1 I P P P R
s2 P−1 I P−1 P−1 R
s3 P−1 P I R R
s4 P−1 P R I R
s5 P−1 P−1 P−1 P−1 I

Analysis s1 s2 s3 s4 s5
s1 I P P P P
s2 P−1 I P−1 P−1 P−1

s3 P−1 P I R R
s4 P−1 P R I R
s5 P−1 P R R I

Chemistry s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

Anal. Chem. s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

Org. Chem. s1 s2 s3 s4 s5
s1 I P P P−1 P
s2 P−1 I P P−1 P
s3 P−1 P−1 I P−1 P
s4 P P P I P
s5 P−1 P−1 P−1 P−1 I

In Table 6 we present the preference relations that PROMETHEE I states for any level of the considered

hierarchy of criteria. More precisely, considering Matrixr to be one of the seven matrices presented in Table

6, we have:
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Matrixr(si, sj) =



































P if si is preferred to sj with respect to criterion Gr,

I if si is indifferent to sj with respect to criterion Gr,

R if si is incomparable to sj with respect to criterion Gr,

P−1 if sj is preferred to si with respect to criterion Gr

In Table 6, MatrixComprehensively(s1, s5) = P is underlined in order to evidence that there exists a couple

of alternatives (si, sj) such that si is preferred to sj with respect to some criterion Gr, but with respect

to a subcriterion immediately descending from Gr, say G(r,w), si is not preferred to sj . In our example,

s1 is preferred to s5 with respect to the totality of criteria, but s1 is incomparable to s5 with respect to

Mathematics being a subcriterion of the totality of criteria. Note that the underlined couple (s1, s5) is not

the only example of such a situation in Table 6.

In Table 7, we can see the ranking obtained by Hierarchical PROMETHEE II for each criterion/subcriterion

of the hierarchy.

Table 7: Ranking of students at all levels of the hierarchy of criteria, obtained using Hierarchical
PROMETHEE II

Position/subject Comprehensive Maths Algebra Analysis Chemistry Analytical Chemistry Organic Chemistry

1 s1 (0.2000) s1 (0.0938) s1 (0.0417) s1 (0.0521) s4 (0.1250) s4 (0.0500) s4 (0.0750)
2 s4 (0.1062) s3 (0.0375) s3 (0.0125) s3 (0.0250) s1 (0.1063) s1 (0.0396) s1 (0.0667)
3 s2 (-0.0167) s4 (-0.0187) s5 (-0.0083) s4 (-0.0021) s2 (0.0688) s2 (0.0188) s2 (0.0500)
4 s3 (-0.0938) s5 (-0.0271) s4 (-0.0167) s5 (-0.0188) s3 (-0.1313) s3 (-0.0438) s3 (-0.0875)
5 s5 (-0.1958) s2 (-0.0854) s2 (-0.0292) s2 (-0.0563) s5 (-0.1688) s5 (-0.0646) s5 (-0.1042)

Now, let us suppose that the Dean decides to use the Hierarchical PROMETHEEGKS providing some

detailed outranking and non-outranking information with respect to all criteria considered together, and with

respect to particular subcriteria. At the same time, (s)he wishes to obtain detailed information regarding the

necessary and possible outranking relations. In order to use the methodology presented above, we suppose

that the Dean can give information regarding indifference and preference thresholds on all elementary

subcriteria, as shown in Table 8.

Table 8: Indifference and preference thresholds provided by the DM

Elementary subcriterion, gt qt,∗ q∗t pt,∗ p∗t
Group Theory 1 2 4 5
Linear Algebra 1 2 4 5

Calculus 1 2 4 5
Functions Theory 1 2 4 5

Analytical Chemistry I 1 2 4 5
Applied Analytical Chemistry 1 2 4 5

Organic Chemistry I 1 2 4 5
Organic Chemistry II 1 2 4 5
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Let us first suppose, that the outranking relation is exploited in the way of PROMETHEE II, and that the

Dean gives the following preference information:

• with respect to Mathematics, student s4 is preferred to each other student more than student s2 is

preferred to each other student (s4 ≻Φ1
s2),

• with respect to Organic Chemistry, student s4 is preferred to each other student more than student

s3 is preferred to each other student (s4 ≻Φ(2,2)
s3).

These two pieces of information are translated into the following constraints regarding the variables of

the ordinal regression problem:

• s4 ≻Φ1
s2 is translated into:

Φ1(s4) =
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≥

≥ Φ1(s2) =
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







−
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







+ ε

• s4 ≻Φ(2,2)
s3 is translated into:

Φ(2,2)(s4) =
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≥

≥ Φ(2,2)(s3) =
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







−
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







+ ε

In Table 9, we show the necessary outranking relation with respect to some criteria and subcriteria of

the hierarchy. For other subcriteria the necessary outranking relation is empty.

Table 9: Necessary outranking relations obtained using Hierarchical PROMETHEEGKS and exploitation of
the outranking relation in the way of PROMETHEE II

%N
(0) s1 s2 s3 s4 s5 %N

(1) s1 s2 s3 s4 s5 %N
(1,2) s1 s2 s3 s4 s5 %N

(2,2) s1 s2 s3 s4 s5

s1 1 0 0 0 0 s1 1 1 0 0 0 s1 1 0 0 0 0 s1 1 0 0 0 0
s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0
s3 0 0 1 0 0 s3 0 1 1 0 0 s3 0 0 1 0 0 s3 0 0 1 0 1
s4 0 0 0 1 0 s4 0 1 0 1 0 s4 0 0 0 1 0 s4 0 0 1 1 1
s5 0 0 0 0 1 s5 0 0 0 0 1 s5 0 1 0 0 1 s5 0 0 0 0 1

In the first matrix of Table 9, we observe that preference information provided by the DM does not

imply any necessary outranking with respect to the totality of criteria. At the same time, we obtain
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partial information that cannot be obtained by PROMETHEEGKS for a flat structure of the set of criteria;

for example, we can see that students s1, s3 and s4 are necessarily preferred to student s2 with respect

to Mathematics, so as student s4 is necessarily preferred to student s3 and s5 with respect to Organic

Chemistry, and so on.

Now, let us suppose that the outranking relation is exploited in the way of PROMETHHE I. We are

considering the same preference information provided by the Dean. It is translated, however, in a different

way than before:

• s4 ≻Φ1
s2 is translated into constraints:

1. Φ+
(1)(s4) ≥ Φ+

(1)(s2) ⇔
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







≥
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







,

2. Φ−
(1)(s4) ≤ Φ−

1 (s2) ⇔
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≤
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







,

3. Φ+
(1)(s4) − Φ−

(1)(s4) ≥ Φ+
(1)(s2) − Φ−

(1)(s2) + ε⇔

∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G1)

1

n− 1
πt(x, s4)







≥

≥
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(s2, x)







−
∑

x∈A\{s2}







∑

t∈E(G1)

1

n− 1
πt(x, s2)







+ ε.

• s4 ≻Φ(2,2)
s3 is translated into constraints:

1. Φ+
(2,2)(s4) ≥ Φ+

(2,2)(s3) ⇔
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







≥
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







,

2. Φ−
(2,2)(s4) ≤ Φ−

(2,2)(s3) ⇔
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≤
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







,

3. Φ+
(2,2)(s4) − Φ−

(2,2)(s4) ≥ Φ+
(2,2)(s3) − Φ−

(2,2)(s3) + ε⇔

∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(s4, x)







−
∑

x∈A\{s4}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s4)







≥

≥
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(s3, x)







−
∑

x∈A\{s3}







∑

t∈E(G(2,2))

1

n− 1
πt(x, s3)







+ ε.

In Table 10, we show the necessary outranking relation with respect to some subcriteria of the hierarchy.

Also in this case, the necessary outranking relation with respect to the totality of criteria is empty, however, it

is interesting to see some partial information at lower levels of the hierarchy, where the necessary outranking

relation is not empty; e.g: with respect to Analysis student s5 necessarily outranks student s2, or with

respect to Organic Chemistry, student s3 necessarily outranks student s5, and so on.
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Table 10: Necessary outranking relations obtained using Hierarchical PROMETHEEGKS and exploitation
of the outranking relation in the way of PROMETHEE I

%N
(0) s1 s2 s3 s4 s5 %N

(1,2) s1 s2 s3 s4 s5 %N
(2,2) s1 s2 s3 s4 s5

s1 1 0 0 0 0 s1 1 0 0 0 0 s1 1 0 0 0 0
s2 0 1 0 0 0 s2 0 1 0 0 0 s2 0 1 0 0 0
s3 0 0 1 0 0 s3 0 0 1 0 0 s3 0 0 1 0 1
s4 0 0 0 1 0 s4 0 0 0 1 0 s4 0 0 0 1 0
s5 0 0 0 0 1 s5 0 1 0 0 1 s5 0 0 0 0 1

6 Conclusions

In this paper, we proposed a new procedure aiming at extending the outranking methods to the case of the

hierarchy of criteria in the way introduced in [3]. The family of criteria is not considered at the same level,

but, instead, it has a hierarchical structure. Considering the hierarchical structure of criteria, the Decision

Maker (DM) can obtain not only comprehensive preference relation with respect to all criteria, but also

partial preference relation with respect to subcriteria at different levels of the hierarchy. This is not possible

when considering the flat structure of criteria.

Let us remark that the use of the hierarchy of criteria proposed by our approach is rather different from

other MCDA methodologies [19, 5]. In fact, while in general the hierarchy of criteria is used to decompose and

make easier the preference elicitation concerning pairwise comparisons of criteria with respect to relative

importance, in our approach, a preference relation in each node of the hierarchy constitutes a base for

discussion with the DM.

We wish to stress that this specific use of the hierarchy of criteria can be applied to any MCDA method-

ology. In this paper we have applied it to Robust Ordinal Regression (ROR) approach, but it can be

applied to any other MCDA methodology, even those which use the hierarchy to ask the DM for pairwise

comparisons of subcriteria with respect to their importance.

Remark, moreover, that our hierarchical procedures boil down to the classical ELECTRE and PROMETHEE

methods when criteria are considered at one level only. This proves that our hierarchical procedures gener-

alize the classical outranking methods.

We presented the hierarchical outranking methods for two types of preference information from the

part of the DM: direct, considered in classical outranking methods, and indirect, considered in Robust

Ordinal Regression for outranking methods. ROR takes into account all outranking models compatible with

preference information provided by the DM in terms of exemplary outranking and non-outranking relations

for some pairs of reference alternatives. It is producing two binary relations: the necessary outranking

relation (SN , %N ), for which a outranks b for all compatible outranking models, and the possible outranking

relation (SP , %P ), for which a outranks b for at least one compatible outranking model. When ROR is
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applied to hierarchical outranking methods, one gets necessary (%N
r ) and possible (%P

r ) outranking relations

for each criterion/subcriterion Gr belonging to the hierarchy. In this way, the DM knows the necessary and

possible preference relations for given preference information, not only at the comprehensive level, for the

totality of criteria, but also for any criterion/subcriterion of the hierarchy. Such finer information about

preferences has an advantage over the comprehensive information because it permits to decompose the

comprehensive preferences into their constituent elements. The application of ROR to ELECTRE and

PROMETHEE methods was done in [9] and [13], but also in this case, our hierarchical procedures can

be considered as generalizations of both ELECTREGKMS and PROMETHEEGKS because the hierarchical

procedures boil down to these methods when all criteria are considered at the same level. In a companion

paper, we propose to extend the hierarchy of criteria also on the sorting outranking methods.
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[9] S. Greco, M. Kadziński, V.Mousseau, and R. S lowiński. ELECTREGKMS : Robust ordinal regression

for outranking methods. European Journal of Operational Research, 214(1):118–135, 2011.
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Appendix A

Proof of Proposition 2.1

1. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A, such that aS(r,j)b, for all j = 1, . . . , n(r). This

means that:

α) C(r,j)(a, b) ≥ λ(r,j), for all j = 1, . . . , n(r),

β) gt(b) − gt(a) < vt, for all t ∈ E(G(r,j)), for all j = 1, . . . , n(r).

Noting that we are considering the case in which each criterion belongs to only one of the criteria from

the upper level (see Section 2.1), we have:

γ) ∪
n(r)
j=1E(G(r,j)) = E(Gr),

δ) Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b),

θ) λr =

n(r)
∑

j=1

λ(r,j),

thus

Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b) ≥

n(r)
∑

j=1

λ(r,j) = λr by δ), α) and θ)

and

gt(b) − gt(a) < vt, for all t ∈ E(Gr) by β) and γ).

This implies that aSrb.

2. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A, such that not(aS(r,j)b), for all j = 1, . . . , n(r).

This means that for all j = 1, . . . , n(r) we have:

α
′
) C(r,j)(a, b) < λ(r,j) or

β
′
) ∃t ∈ E(G(r,j)) : gt(b) − gt(a) ≥ vt.
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We distinguish two cases:

• Let us suppose that not(aS(r,j)b) is satisfied because of β
′
); thus there exists one elementary

subcriterion gt ∈ E(G(r,j)) such that gt(b) − gt(a) ≥ vt; being E(G(r,j)) ⊆ E(Gr), gt is an

elementary subcriterion belonging also to E(Gr) and so it opposes veto to the outranking of a

over b with respect to criterion Gr; therefore not(aSrb).

• Let us suppose that for all j = 1, . . . , n(r), β
′
) is never satisfied, that is for all j = 1, . . . , n(r),

for all t ∈ E(G(r,j)), gt(b) − gt(a) < vt. Thus, for all j = 1, . . . , n, not(aS(r,j)b) holds because of

α
′
), that is for all j = 1, . . . , n(r), C(r,j)(a, b) < λ(r,j). Reminding γ), δ) and θ) of point 1. of this

Proposition and by α
′
) we have:

Cr(a, b) =

n(r)
∑

j=1

C(r,j)(a, b) <

n(r)
∑

j=1

λ(r,j) = λr.

This opposes to outranking of a over b with respect to criterion Gr, and thus not(aSrb).

Proof of Proposition 3.1

1. Let a, b ∈ A, and r ∈ IG \ EL such that aSN
r b. This means that aSrb for all compatible outranking

models, and thus there exists at least one compatible outranking model for which aSrb, thus aSP
r b.

2. Let S an outranking relation, a ∈ A an alternative and Gr, with r ∈ IG \EL a criterion/subcriterion.

We have that:

• for all t ∈ E(Gr), φt(a, a) = 1, and therefore by equation (1), Cr(a, a) = Kr,

• for all λr ∈
[

Kr

2 ,Kr

]

, Cr(a, a) ≥ λr, (it follows by previous point),

• gt(a) − gt(a) = 0 < vt, for all t ∈ E(Gr).

The last two statements bring to aSra. Being S an arbitrary outranking relation, we obtain that aSN
r a

and by point 1. of this Proposition aSP
r a; being a an arbitrary alternative, we obtain that SN

r and SP
r

are reflexive relations.

3. Let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that aSN
r b. This means that for all compatible

outranking models, a outranks b with respect to criterion Gr; thus there does not exist a compatible

outranking model for which a does not outrank b with respect to criterion Gr, that is not(aSCP
r b).

Conversely, let Gr ∈ G with r ∈ IG \EL, and a, b ∈ A such that not(aSCP
r b). This means that it is not

true that there exists one compatible outranking model for which a does not outrank b with respect
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to criterion Gr. Thus, for all compatible outranking models a outranks b with respect to criterion Gr,

that is aSN
r b.

4. Let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that aSP
r b. This means that there exists at least one

compatible outranking model for which a outranks b with respect to criterion Gr; thus, it is not true

that a does not outrank b with respect to criterion Gr for all compatible outranking models, that is

not(aSCN
r b).

Conversely, let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that not(aSCN
r b). This means that it is

not true that for all compatible outranking models a does not outrank b with respect to criterion Gr.

Thus, there exists at least one compatible outranking model for which a outranks b with respect to

criterion Gr, that is aSP
r b.

5. Let Gr ∈ G with r ∈ IG \ EL, and a, b ∈ A such that aSCN
r b. This means that a does not outrank b

for all compatible outranking models; thus there exists at least one compatible outranking model for

which a does not outrank b, that is aSCP
r b.

6. For all a ∈ A, by points 2. and 3. of this Proposition, we have:

aSN
r a⇔ not(aSCP

r a),

and thus SCP
r is an irreflexive binary relation.

Analogously, for all a ∈ A, by points 2. and 4. of this Proposition, we have:

aSP
r a⇔ not(aSCN

r a),

and thus SCN
r is an irreflexive binary relation.

Proof of Proposition 3.2

1. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A such that aSN
(r,j)b, for all j = 1, . . . , n(r). This

means that aS(r,j)b for all j = 1, . . . , n(r) and for all compatible outranking models. Let M one of

these compatible outranking models and S the outranking relation induced by M . By point 1. of

Proposition 2.1 we obtain aSrb. Being M an arbitrary compatible outranking model, we have that a

outranks b with respect to criterion Gr for all compatible outranking models, and so aSN
r b.

2. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL} , and a, b ∈ A, such that
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α) aSN
(r,j)b for all j = 1, . . . , n(r), j 6= w,

β) aSP
(r,w)b.

Hypothesis β) implies that there exists at least one compatible outranking model M inducing the

outranking relation S such that aS(r,w)b. But for the hypothesis α) we have also that aS(r,j)b, for all

j = 1, . . . , n(r) and j 6= w. Together, these considerations imply that aS(r,j)b for all j = 1, . . . , n(r),

and thus by point 1. of Proposition 2.1 we obtain that a outranks b with respect to criterion Gr for

outranking model M and thus aSP
r b.

3. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL}, and a, b ∈ A such that aSCN
(r,j)b, for all j = 1, . . . , n(r). This

means that not(aS(r,j)b), for all j = 1, . . . , n(r) and for all compatible outranking models. Considering

M one of these compatible outranking models, and S the outranking relation induced by M , by point

2. of Proposition 2.1 we obtain not(aSrb). Being M an arbitrary compatible outranking model, we

have not(aSrb) for all compatible outranking models and thus aSCN
r b.

4. Let Gr ∈ G with r ∈ IG \ {LBO ∪ EL} , and a, b ∈ A such that:

α) aSCN
(r,j)b, for all j = 1, . . . , n(r), j 6= w,

β) aSCP
(r,w)b,

β) implies that there exist at least one compatible outranking model M inducing the outranking

relation S, such that not(aS(r,w)b). By α) we have also that not(aS(r,j)b), for all j = 1, . . . , n(r) and

j 6= w. Together, these considerations imply that not(aS(r,j)b) for all j = 1, . . . , n(r), and thus by

point 2. of Proposition 2.1 we obtain not(aSrb). Therefore, aSCP
r b.

Proof of Proposition 4.1

1. Without loss of generality we have supposed that the hierarchy is structured in a way that each

subcriterion at level l descends from only one criterion of level l − 1 (see Section 2.1). In this way,

considering criterion Gr and its subcriteria G(r,1), . . . , G(r,n(r)) we have:

• πr(a, b) =
∑

t∈E(Gr)

ktPt(a, b),

• π(r,j)(a, b) =
∑

t∈E(G(r,j))

ktPt(a, b), for all j = 1, . . . , n(r),

• E(Gr) = ∪
n(r)
j=1E(G(r,j)).
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We can observe that each t ∈ E(Gr) belongs to only one of E(G(r,j)), j = 1, . . . , n, and thus:

πr(a, b) =
∑

t∈E(Gr)

ktPt(a, b) =

n(r)
∑

j=1





∑

t∈E(G(r,j))

ktPt(a, b)



 =

n(r)
∑

j=1

π(r,j)(a, b).

2. For each criterion/subcriterion Gr ∈ G, r ∈ IG \EL, supposing that there exist n different alternatives

in A, we have for all a ∈ A:

• Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x),

• Φ+
(r,j)(a) =

1

n− 1

∑

x∈A\{a}

π(r,j)(a, x), for all j = 1, . . . , n(r).

Thus, by point 1. of this Proposition and using the above expressions:

Φ+
r (a) =

1

n− 1

∑

x∈A\{a}

πr(a, x) =
1

n− 1

∑

x∈A\{a}





n(r)
∑

j=1

π(r,j)(a, x)



 =

n(r)
∑

j=1





1

n− 1

∑

x∈A\{a}

π(r,j)(a, x)



 =

=

n(r)
∑

j=1

Φ+
(r,j)(a).

3. Analogous to proof of point 2.

4. By points 2. and 3. of this Proposition, for each a ∈ A, and for each Gr ∈ G, r ∈ IG \ EL,

Φr(a) = Φ+
r (a) − Φ−

r (a) =

n(r)
∑

j=1

Φ+
(r,j)(a) −

n(r)
∑

j=1

Φ−
(r,j)(a) =

n(r)
∑

j=1

[

Φ+
(r,j)(a) − Φ−

(r,j)(a)
]

=

=

n(r)
∑

j=1

Φ(r,j)(a).

Proof of Proposition 4.2

1. Let a, b ∈ A and Gr ∈ G, r ∈ IG \ EL, such that aP I
(r,j)b, for all j = 1, . . . , n(r). By hypothesis, we

have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−
(r,j)(a) ≤ Φ−

(r,j)(b), for all j = 1, . . . , n(r),

and for each j at least one of the above inequalities is strict. Then adding up with respect to j, we

obtain:
n(r)
∑

j=1

Φ+
(r,j)(a) ≥

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−
(r,j)(a) ≤

n(r)
∑

j=1

Φ−
(r,j)(b),
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and thus by points 2. and 3. of Proposition 4.1,

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b)

with at least one of the two inequalities being strict; therefore aP I
r b.

2. Let a, b ∈ A, Gr ∈ G with r ∈ IG \ EL, and {C1, C2} a partition of {1, . . . , n(r)}, such that aP I
(r,j)b,

for all j ∈ C1 and aII(r,j)b, for all j ∈ C2. By the first hypothesis, we have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−
(r,j)(a) ≤ Φ−

(r,j)(b), for all j ∈ C1 (3)

with at least one of the two inequalities strict; by the second hypothesis we have:

Φ+
(r,j)(a) = Φ+

(r,j)(b) and Φ−
(r,j)(a) = Φ−

(r,j)(b), for all j ∈ C2. (4)

Thus, by points 2. and 3. of Proposition 4.1,

∑

j∈C1

Φ+
(r,j)(a) ≥

∑

j∈C1

Φ+
(r,j)(b) and

∑

j∈C1

Φ−
(r,j)(a) ≤

∑

j∈C1

Φ−
(r,j)(b)

with at least one of the two inequalities strict; by (3) and (4) we obtain:

n(r)
∑

j=1

Φ+
(r,j)(a) =

∑

j∈C1

Φ+
(r,j)(a) +

∑

j∈C2

Φ+
(r,j)(a) ≥

∑

j∈C1

Φ+
(r,j)(b) +

∑

j∈C2

Φ+
(r,j)(b) =

n(r)
∑

j=1

Φ+
(r,j)(b)

and

n(r)
∑

j=1

Φ−
(r,j)(a) =

∑

j∈C1

Φ−
(r,j)(a) +

∑

j∈C2

Φ−
(r,j)(a) ≤

∑

j∈C1

Φ−
(r,j)(b) +

∑

j∈C2

Φ−
(r,j)(b) =

n(r)
∑

j=1

Φ−
(r,j)(b);

therefore
n(r)
∑

j=1

Φ+
(r,j)(a) ≥

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−
(r,j)(a) ≤

n(r)
∑

j=1

Φ−
(r,j)(b),

that is, by points 2. and 3. of Proposition 4.1,

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b)

with at least one of the two inequalities being strict. From this follows that aP I
r b.
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3. Let a, b ∈ A and Gr ∈ G, r ∈ IG \ EL such that aII(r,j)b, for all j = 1, . . . , n(r). This means that

Φ+
(r,j)(a) = Φ+

(r,j)(b) and Φ−
(r,j)(a) = Φ−

(r,j)(b), for all j = 1, . . . , n(r).

Adding up with respect to j we obtain:

n(r)
∑

j=1

Φ+
(r,j)(a) =

n(r)
∑

j=1

Φ+
(r,j)(b) and

n(r)
∑

j=1

Φ−
(r,j)(a) =

n(r)
∑

j=1

Φ−
(r,j)(b), for all j = 1, . . . , n(r),

that is, by points 2. and 3. of Proposition 4.1,

Φ+
r (a) = Φ+

r (b) and Φ−
r (a) = Φ−

r (b),

and therefore aIIr b.

Proof of Proposition 4.3

1. Let a, b ∈ A, Gr ∈ G, r ∈ IG \EL such that aP II
(r,j)b, for all j = 1, . . . , n(r). By point 4. of Proposition

4.1,

Φ(r,j)(a) > Φ(r,j)(b), for all j = 1, . . . , n(r) ⇒

n(r)
∑

j=1

Φ(r,j)(a) >

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) > Φr(b),

and therefore aP II
r b.

2. Let a, b ∈ A, Gr ∈ G, r ∈ IG \ EL and {C1, C2} a partition of {1, . . . , n(r)} such that aP II
(r,j)b for all

j ∈ C1 and aIII(r,j)b for all j ∈ C2. By hypothesis we have:

Φ(r,j)(a) > Φ(r,j)(b), for all j ∈ C1 and Φ(r,j)(a) = Φ(r,j)(b), for all j ∈ C2.

Adding up with respect to j, by point 4. of Proposition 4.1, we obtain:

∑

j∈C1

Φ(r,j)(a) >
∑

j∈C1

Φ(r,j)(b) ⇒
∑

j∈C1

Φ(r,j)(a) +
∑

j∈C2

Φ(r,j)(a) >
∑

j∈C1

Φ(r,j)(b) +
∑

j∈C2

Φ(r,j)(b) ⇔

⇔

n(r)
∑

j=1

Φ(r,j)(a) >

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) > Φr(b),

and therefore aP II
r b.
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3. Let a, b ∈ A, Gr ∈ G, r ∈ IG \EL, such that aIII(r,j)b, for all j = 1, . . . , n(r). By point 4. of Proposition

4.1,

Φ(r,j)(a) = Φ(r,j)(b), for all j = 1, . . . , n(r) ⇒

n(r)
∑

j=1

Φ(r,j)(a) =

n(r)
∑

j=1

Φ(r,j)(b) ⇔ Φr(a) = Φr(b),

and therefore aIIIr b.

Proof of Proposition 5.1

We prove this Proposition in case of PROMETHEE I because the proof in case of PROMETHEE II is

analogous.

1. Let be a, b ∈ A, and r ∈ IG \ EL, such that a %N
r b. This means that a outranks b with respect to

criterion Gr for all compatible outranking models; thus, there exists at least one compatible outranking

model for which a outranks b with respect to criterion Gr, and therefore a %P
r b.

2. For each a ∈ A, for each criterion/subcriterion Gr, and for each compatible outranking model, we

have:

Φ+
r (a) ≥ Φ+

r (a) and Φ−
r (a) ≤ Φ−

r (a); (5)

By equation (5) it follows that, for all compatible outranking models Φr(a) = Φ+
r (a)−Φ−

r (a) ≥ Φr(a)

and thus a %N
r a, for all a ∈ A proving that %N

r is a reflexive binary relation. Being %N
r ⊆%P

r , and

%N
r a reflexive binary relation, also %P

r is a reflexive binary relation.

Proof of Proposition 5.2

We prove this Proposition in case of PROMETHEE I because the proof in case of PROMETHEE II is

analogous.

1. Let a, b ∈ A and r ∈ IG \ {LBO ∪ EL} , such that a %N
(r,j) b for all j = 1, . . . , n(r). This means

that a outranks b with respect to criteria/subcriteria G(r,j), for all j = 1, . . . , n(r), for all compatible

outranking models. Thus, for all compatible outranking models we have:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−
(r,j)(a) ≤ Φ−

(r,j)(b), for all j = 1, . . . , n(r). (6)

By points 2. and 3. of Proposition 4.1 and equation above, for all compatible outranking models we

have that:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b),
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implying that a %N
r b.

2. Let a, b ∈ A and r ∈ IG \ {LBO ∪ EL} , such that a %N
(r,j) b, for all j = 1, . . . , n(r), j 6= w and

a %P
(r,w) b. This means that a outranks b with respect to criteria G(r,j), for all j = 1, . . . , n(r), j 6= w

for all compatible outranking models and a outranks b with respect to criterion/subcriterion G(r,w)

for at least one compatible outranking model. From this we have that, for all compatible outranking

models:

Φ+
(r,j)(a) ≥ Φ+

(r,j)(b) and Φ−
(r,j)(a) ≤ Φ−

(r,j)(b), for all j = 1, . . . , n(r), j 6= w, (7)

and for at least one compatible outranking model:

Φ+
(r,w)(a) ≥ Φ+

(r,w)(b) and Φ−
(r,w)(a) ≤ Φ−

(r,w)(b). (8)

Let us denote by M the outranking model satisfying equation (8). In particular, this compatible

outranking model fulfills also equation (7). Thus, by points 2. and 3. of Proposition 4.1, and

considering the compatible outranking model M , we have:

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b),

and therefore a outranks b with respect to criterion/subcriterion Gr for at least one compatible out-

ranking model, that is a %P
r b.

Appendix B

Ordinal regression constraints used in the Hierarchical ELECTREGKMS method

Supposing that the DM has given some preference information of the type described in section 3.1, compatible

outranking models are the sets of variables ψt(a, b) for all (a, b) ∈ B, t ∈ EL, of concordance indices Cr(a, b),

concordance cutting levels λs, for all s ∈ LBO, and veto thresholds vt for all t ∈ EL, satisfying the following

set of conditions:

• Compatibility with all statements concerning the truth or falsity of the outranking relation for some

reference alternatives a, b ∈ AR:
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– For all (a, b) ∈ BR such that aSrb, with r ∈ IG \ EL:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) ≥ λr and gt(b) − gt(a) < vt, for all t ∈ E(Gr),

– For all (a, b) ∈ BR such that not(aSrb), with r ∈ IG \ EL:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) < λr or there exists t ∈ E(Gr) : gt(b) − gt(a) ≥ vt,

which can be modeled as:

Cr(a, b) =
∑

t∈E(Gr)

ψt(a, b) + ε ≤ λr +Mr
0 (a, b) and gt(b) − gt(a) ≥ vt − δrMt(a, b),

where:

∗ Mr
0 (a, b),Mt(a, b) ∈ {0, 1}, for all t ∈ E(Gr),

∗ Mr
0 (a, b) +

∑

t∈E(Gr)

Mt(a, b) ≤ |E(Gr)| ,

∗ δr is an auxiliary coefficient fixed on a big positive value (i.e. δr ≥ maxt∈E(Gr){βt − αt}

where αt = mina∈A gt(a) and βt = maxa∈A gt(a)).

Differently from [9], we have one binary variable Mr
0 (a, b) for each criterion Gr, r ∈ IG \EL, and

for each couple (a, b) ∈ BR, because we need to distinguish the reasons for which the outranking

of alternative a over alternative b is not true. In fact, let us suppose, for example, that alternative

a does not outrank alternative b with respect to criteria Gr1 and Gr2 , and that in the first case,

a does not outrank b because there is an elementary subcriterion descending from Gr1 putting

veto while the concordance test is verified. At the same time, let us suppose that a does not

outrank b with respect to Gr2 because the concordance test is not verified. Then, in the first case

Mr1
0 (a, b) = 1, because the concordance test is verified, and in the second case Mr2

0 (a, b) = 0,

because the concordance test is not verified.

• Constraints on the values of λr, for all r ∈ IG \EL, inter-criteria parameters and of vt and kt, for all

t ∈ EL:

– Normalization of the marginal concordance indices for all elementary subcriteria, so that the in-

dices corresponding to the greatest difference in evaluations of two alternatives on each elementary
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subcriterion (gt(x
∗
t) − gt(xt,∗) = βt − αt) sum up to 1:

∑

t∈EL

ψt(x
∗
t , xt,∗) = 1 with x∗t , xt,∗ ∈ A : gt(x

∗
t) = βt and gt(xt,∗) = αt, for all t ∈ EL.

As we normalize weights of the elementary subcriteria so that they sum up to 1, each weight is

understood as a maximal share of each elementary subcriterion in the comprehensive concordance

index. Consequently, kt = ψt(x
∗
t , xt,∗), for all t ∈ EL.

– Lower and upper bounds on concordance cutting level of a criterion belonging to last but one

level:

λs ∈

[

Ks

2
,Ks

]

, where Ks =
∑

t∈E(Gs)

kt.

In consequence of the above considerations, the concordance cutting levels of criteria belonging

to the last but one level have to verify:

∑

t∈E(Gs)

ψt(x
∗
t , xt,∗)

2
≤ λs ≤

∑

t∈E(Gs)

ψt(x
∗
t , xt,∗).

– The concordance cutting level for criterion Gr, r ∈ IG \ {LBO ∪ EL}, is equal to the sum of the

concordance cutting levels of subcriteria descending from it, that is G(r,j), j = 1, . . . , n(r) :

λr =

n(r)
∑

j=1

λ(r,j).

– Constraints on veto thresholds vt, t ∈ EL,:

∗ vt > p∗t , for each t ∈ EL1,

∗ vt > gt(b) − gt(a), for each t ∈ EL2 such that a ∼t b.

• Constraints on the values of marginal concordance indices ψt(a, b), t ∈ EL conditioned by intra-

criterion and inter-criterion preference information, for all (a, b) ∈ B:

– kt,∗ ≤ ψt(x
∗
t , xt,∗) ≤ k∗t , t ∈ EL,

– ψt1(x∗t1 , xt1,∗) ≥ ψt2(x∗t2 , xt2,∗) + ε if elementary subcriterion gt1 is more important than ele-

mentary subcriterion gt2 , t1, t2 ∈ EL,

– ψt1(x∗t1 , xt1,∗) = ψt2(x∗t2 , xt2,∗) if elementary subcriteria gt1 and gt2 are equally important,

t1, t2 ∈ EL,

– ψt(a, b) = 0 if gt(b) − gt(a) ≥ p∗t ,
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– ψt(a, b) > 0 if gt(a) − gt(b) > −pt,∗ ,

– ψt(a, b) = ψt(x
∗
t , xt,∗) if gt(a) − gt(b) ≥ −qt,∗,

– ψt(a, b) < ψt(x
∗
t , xt,∗) if gt(b) − gt(a) > q∗t ,

– ψt(a, b) = 0 if b ≻t a,

– ψt(a, b) = 0 and ψt(b, a) = 0 if a ∼t b.

• Monotonicity of the functions of marginal concordance indices ψt(a, b), t ∈ EL:

ψt(a, b) ≥ ψt(c, d) if gt(a) − gt(b) > gt(c) − gt(d),

ψt(a, b) = ψt(c, d) if gt(a) − gt(b) = gt(c) − gt(d),

Note that all strict inequalities are transformed into weak inequalities involving an auxiliary variable ε in

the set of constraints EAR

in the section 3.1.

For example, the constraint ψt(a, b) > 0 if gt(a) − gt(b) > −pt,∗ , becomes ψt(a, b) ≥ ε if gt(a) − gt(b) >

−pt,∗.

Ordinal regression constraints used in the Hierarchical PROMETHEEGKS method

Supposing that the DM has given some preference information of the type described in section 5.1, compatible

outranking models are the sets of preference indices πt(a, b) for all (a, b) ∈ B, t ∈ EL satisfying the following

conditions:

• Compatibility with local and global preference relations provided by the DM with respect to a partic-

ular criterion Gr in the hierarchy:

– for all a, b ∈ AR, and Gr with r ∈ IG \ EL, such that a %πr
b,

πr(a, b) =
∑

t∈E(Gr)

πt(a, b) ≥ πr(b, a) =
∑

t∈E(Gr)

πt(b, a),

Relations ≻πr
and ∼πr

are translated analogously, using strict inequality and equality, respec-

tively.

– Considering PROMETHEE I:

∗ Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b), if a %Φr
b,

∗

Φ+
r (a) ≥ Φ+

r (b) and Φ−
r (a) ≤ Φ−

r (b) and

Φ+
r (a) − Φ−

r (a) ≥ Φ+
r (b) − Φ−

r (b) + ε







if a ≻Φr
b
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∗ Φ+
r (a) = Φ+

r (b) and Φ−
r (a) = Φ−

r (b) if a ∼Φr
b.

– Considering PROMETHEE II:

Φr(a) = Φ+
r (a) − Φ−

r (a) ≥ Φr(b) = Φ+
r (b) − Φ−

r (b) if a %Φr
b.

Relations ≻Φr
, and ∼Φr

are treated analogously, using strict inequality and equality, respectively.

• Normalization of the marginal preference indices for all criteria, so that the indices corresponding to

the greatest difference in evaluations of two alternatives on each elementary subcriterion

(gt(x
∗
t) − gt(xt,∗) = βt − αt) sum up to 1:

∑

t∈EL

πt(x
∗
t , xt,∗) = 1 with x∗t , xt,∗ ∈ A, for all t ∈ EL.

We normalize weights of the criteria, so that they sum up to 1. Therefore, each weight is now

understood as a maximal share of each elementary subcriterion in the aggregated preference index.

Consequently, kt = πt(x
∗
t , xt,∗), for all t ∈ EL.

• Restrictions concerning the value of marginal preference indices πt, t ∈ EL :

– πt(a, b) needs to be equal 0 if a is not better than b on elementary subcriterion gt by more than

the least value of an indifference threshold qt,∗ allowed by the DM:

πt(a, b) = 0 if gt(a) − gt(b) ≤ qt,∗, for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be greater than 0 if a is better than b on elementary subcriterion gt by more

than the greatest value of an indifference threshold q∗t allowed by the DM:

πt(a, b) > 0 if gt(a) − gt(b) > q∗t , for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be less than the maximal value of the preference index on elementary subcriterion

gt if a is not better than b by more than the least value of a preference threshold pt,∗ allowed by

the DM;

πt(a, b) < πt(x
∗
t , xt,∗), if gt(a) − gt(b) < pt,∗, for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) needs to be equal to the maximal value of preference index on elementary subcriterion gt
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if a is better than b by more than the greatest value of a preference threshold p∗t allowed by the

DM:

πt(a, b) = πt(x
∗
t , xt,∗), if gt(a) − gt(b) ≥ p∗t , for all (a, b) ∈ B, t ∈ EL1;

– πt(a, b) and πt(b, a) need to be equal to 0 if the difference between gt(a) and gt(b) is not-significant

for the DM:

πt(a, b) = 0, πt(b, a) = 0 if a ∼t b, t ∈ EL2;

– πt(a, b) needs to be equal to the maximal value of the preference index on criterion gt if the

difference between gt(a) and gt(b) is significant for the DM:

πt(a, b) = πt(x
∗
t , xt,∗), if a ≻t b, t ∈ EL2.

• Monotonicity of the functions of marginal preference indices πt(a, b), for all t ∈ EL :

πt(a, b) ≥ πt(c, d) if gt(a) − gt(b) > gt(c) − gt(d),

πt(a, b) = πt(c, d) if gt(a) − gt(b) = gt(c) − gt(d).

Note that all strict inequalities are transformed into weak inequalities involving an auxiliary variable ε in

the set of constraints EAR

in the section 5.1.
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