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Abstract

A hierarchical decomposition is a common approach for coping with complex decision problems in-

volving multiple dimensions. Recently, the Multiple Criteria Hierarchy Process (MCHP) has been

introduced as a new general framework for dealing with multiple criteria decision aiding (MCDA) in

case of a hierarchical structure of the family of evaluation criteria. This study applies the MCHP

framework to multiple criteria sorting problems and extends existing disaggregation and robust

ordinal regression techniques that induce decision models from data. The new methodology allows

the handling of preference information and the formulation of recommendations at the comprehen-

sive level, as well as at all intermediate levels of the hierarchy of criteria. A case study on bank

performance rating is used to illustrate the proposed methodology.
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1 Introduction

In many decision making problems, decisions concerning a set of alternatives are based on different

evaluation criteria organized in a hierarchical structure. Such a hierarchy introduces a decomposition

of the primary objective into separate dimensions, which are then further analyzed in sub-dimensions,

up to the lowest level of the hierarchy, which consists of the elementary criteria. Structuring decision

problems following such a hierarchical scheme is particularly useful in situations that require con-

sideration of large sets of criteria describing different aspects of the problem at hand. Dealing with

complex families of criteria of diverse nature, poses significant cognitive burden to decision makers

(DMs). Thus, using a hierarchical decomposition facilitates the analysis as it allows DMs to deal with

more manageable elementary dimensions. Furthermore, working with such a hierarchy provides de-

tailed insights on all partial dimensions of the problem, instead of focusing solely on the comprehensive

level.

A common approach to deal with hierarchies of criteria in MCDA is the analytic hierarchy pro-

cess [25], but its fundamental problems are well-documented in the literature (see, for example, [2]).

Recently, the Multiple Criteria Hierarchy Process (MCHP) has been introduced as an alternative

[1, 7, 8]. The MCHP introduces a new modeling framework that allows the construction of sound

decision models in decision problems with a hierarchical structure, through MCDA techniques based

on the preference disaggregation paradigm [21]. The MCHP is able to take into account preference

information not only at a comprehensive level but also at all lower levels of the hierarchy, and provide

recommendations in a similar form.

In previous studies, the MCHP has been introduced in the context of choice and ranking problems,

where the objective is either to choose the best alternative(s) among those considered (choice) or to

rank-order the alternatives from the best to the worst ones. In these contexts, the MCHP has been em-

ployed to construct decision models with outranking methods such as ELECTRE and PROMETHEE

[8], value function models [7], as well as with the Choquet integral preference model [1].

In this study, we extend the MCHP framework to multiple criteria sorting (classification) problems,

where the objective is to assign a set of alternatives to predefined (ordinal) decision classes. Such

problems often arise in many domains [33] and they have attracted much interest in MCDA over
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the past decade. Sorting problems have been dealt in the literature using outranking relations (e.g.,

the ELECTRE Tri method [31]), value functions, and decision rules [15, 16, 17, 27]. In this paper,

we focus on value function models, which constitute a convenient and easy way of modeling DMs

preferences in MCDA problems. The best-known method based on this modeling approach for multiple

criteria sorting problems is the UTADIS method (UTilités Additives DIScriminantes) and its variants

[9, 10, 32]. In this paper, we extend the UTADIS method to problems having a hierarchical structure

by applying the MCHP framework. In order to reduce the cognitive effort of the DM, we also extend

the UTADISGMS method [20], putting it in the MCHP framework. UTADISGMS is the generalization

of UTADIS to the Robust Ordinal Regression (ROR) setting [5, 6, 19]. ROR is a family of methods

taking into account not only one but all instances of an assumed preference model being compatible

with the preference information provided by the DM. In that regard, this study contributes to the

literature on multiple criteria sorting through the extension of existing techniques for inferring decision

models from sorting decision examples, using a formal framework of MCHP, which allows the input

preference information to be decomposed into smaller and more manageable aspects of the problem.

In order to illustrate the proposed methodology, we employ a case study involving a financial decision

problem, namely the performance rating of banks. In a supervisory context, bank rating is a complex

process that requires the consideration of all aspects of bank operation, financial status, and risk

profile. This case study fits well the framework of MCHP and multiple criteria sorting, and thus, it

illustrates well the potentials of the proposed modeling approach in practice.

The rest of the paper is organized as follows: In the next section, a general problem setting is

provided. Section 3 describes the MCHP extension of the UTADIS method to decision problems with

a hierarchical structure, while in section 4 the integration of MCHP and UTADISGMS is explained in

detail. The application to bank performance evaluation is presented in section 5. Finally, section 6

concludes the paper and provides some future research directions.

2 General Setting

A set of alternatives A = {a, b, . . .} is evaluated on a set of criteria structured in a hierarchical way in

l different levels. The complete set of criteria (from all levels) will be denoted by G, while the set of

indices of criteria will be denoted by IG . The criteria at the lowest level of the hierarchy will be called

elementary criteria and the alternatives will be directly evaluated on these criteria only. The set of

indices of elementary criteria will be denoted by EL, while the set of indices of elementary criteria
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descending from node Gr of the hierarchy (r ∈ IG), will be denoted by E(Gr). Each node of the

hierarchy represents a particular sub-dimension of the problem, with G0 corresponding to the root of

the hierarchy (i.e., G0 = G). Without loss of generality, we shall suppose that all elementary criteria

are to be maximized (i.e., preference increases with the value of each criterion).

Furthermore, by n(r) we shall denote the number of criteria G(r,1), . . . , G(r,n(r)) descending from

Gr in the next (lower) level of the hierarchy. Obviously, the elementary criteria are not further

decomposed into subcriteria. By LBO we shall denote the indices of the criteria from the next to the

last level of the hierarchy, while LB(Gr) will denote the set of indices for criteria descending from Gr

and located at the next to the last level.

Assuming that the set of elementary criteria is mutually preferentially independent [23, 30], their

aggregation is possible with an additive value function U : A→ [0, 1], such that:

U(a) =
∑
t∈EL

ut(gt(a))

where ut are marginal value functions related to elementary criteria gt.

In the MCHP context, assuming that at each level criteria are preferentially independent, it is

possible to consider a partial value function for each (non-elementary) criterion Gr, r ∈ IG as follows:

Ur(a) =
∑

t∈E(Gr)

ut(gt(a)).

An obvious consequence is that

Ur(a) =

n(r)∑
j=1

U(r,j)(a) (1)

where U(r,j)(a) represents the value of alternative a according to the j-th subcriterion of Gr, for all

r ∈ IG \ EL (more details on MCHP can be found in [7]).

For each criterion Gr above the level of elementary criteria, the sorting procedure with respect to

subcriteria descending directly from Gr consists in assigning each alternative from A to one among

pr decision classes C1, . . . , Cpr , where Cpr is the class of top performing alternatives and C1 is the

class of the worst alternatives. Note that the sorting with respect to subcriteria descending directly

from different criteria Gr could involve different values of pr, i.e., the number of classes to which an

alternative can be assigned could depend on Gr. For each criterion Gr above the elementary level, class

Ch (h ∈ {1, . . . , pr}) is defined by lower and upper value thresholds brh−1 and brh, such that brh−1 < brh,
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defined on the value function scale. It follows that 0 = br0 < br1 < . . . < brpr−1 < brpr =
∑

t∈E(Gr)

ut(x
mt
t ),

where the value of brpr is the maximum level of the value function for Gr (with xmt
t being the best

performance on elementary criterion gt over all alternatives from A).

3 MCHP and the UTADIS method

Consider an assignment of alternative a ∈ A to class Ch (h ∈ {1, ..., pr}) with respect to subcriteria

descending directly from criterion Gr (r ∈ IG \EL). In the following, instead of criterion Gr, we shall

often use the term node Gr, in order to stress that the assignment takes place in a particular place of

the hierarchy tree.

Moreover, the assignment of alternatives with respect to subcriteria descending directly from criterion

Gr (r ∈ IG \ EL) will be called the assignment in node Gr.

Definition 3.1. In node Gr (r ∈ IG \ EL), alternative a is assigned to class Ch (h = 1, . . . , pr)(
denoted as a −→

r
Ch

)
, iff brh−1 ≤ Ur(a) < brh.

As a consequence, in node Gr,

• a is assigned to at least class Ch

(
a −→

r
C≥h

)
, iff Ur(a) ≥ brh−1,

• a is assigned to at most class Ch

(
a −→

r
C≤h

)
, iff Ur(a) < brh (the inequality becomes weak if

h = pr, that is Ur(a) ≤ brpr),

• a is assigned to some class in the interval [Ch1 , Ch2 ] (1 < h1 < h2 < pr)
(
a −→

r
[Ch1 , Ch2 ]

)
, iff

brh1−1 ≤ Ur(a) < brh2
.

In what follows, in order to simplify the presentation and without loss of generality, we assume

that the same classes apply in all nodes of the hierarchy tree. This means that the number of classes pr

to which each alternative can be assigned does not depend on the considered node Gr. Consequently,

pr = p for all r ∈ IG \ EL.

A first desirable coherence property for hierarchical multiple criteria sorting methods is the fol-

lowing. If an alternative a ∈ A is assigned to class Ch in all nodes directly descending from Gr, then

it should also be assigned to the same class in node Gr. For example, if student S is assigned to

the class of good students in the nodes corresponding to Algebra and Analysis, being the only two

subcriteria of the criterion Mathematics, then S has to be assigned to the class of good students also

in the node of Mathematics. Henceforth, we shall refer to this property as the first coherence property

of hierarchical multiple criteria sorting.
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A second desirable coherence property for hierarchical multiple criteria sorting methods is the

following. If an alternative a ∈ A is assigned to at least class Ch, i.e., to class Ch or better, in all

nodes directly descending from Gr, then it should also be assigned to at least class Ch in node Gr.

Coming back to the previous example, if student S is assigned to at least medium class of students in

the nodes corresponding to Algebra and Analysis, then S has also to be assigned to at least the medium

class of students in the node of Mathematics. Let us call this property second coherence property of

hierarchical multiple criteria sorting. Of course, another coherence property for hierarchical multiple

criteria sorting methods is symmetric to the second property, i.e., if an alternative a ∈ A is assigned to

at most class Ch (to class Ch or worse), in all nodes directly descending from Gr, then it should also

be assigned to at most class Ch in node Gr. Henceforth, this property will be referred to as the third

coherence property of hierarchical multiple criteria sorting. The second and third coherence properties

of hierarchical multiple criteria sorting can be synthesized as follows: in node Gr, an alternative a ∈ A

should be assigned to an interval of contiguous classes, included in the interval of classes having as

extrema the worst and the best classes to which a is assigned in nodes directly descending from Gr. For

example, if student S is assigned to the interval of classes from moderate to relatively good students

in the node of Algebra, and to the interval of classes from medium to good students in the node of

Analysis, then student S has to be assigned to an interval of classes from moderate to good students

in the node of Mathematics. Even if this coherence property is the mere synthesis of the above second

and third coherence properties, we shall refer to it as the fourth coherence property for hierarchical

multiple criteria sorting methods, because it will be useful to recall it in the subsequent discussion.

Proposition 3.1 given below says that the first and the fourth coherence properties for hierarchi-

cal multiple criteria sorting methods coincide, and that they hold if and only if the value thresholds

separating the classes in node Gr are equal to the sum of the corresponding value thresholds separat-

ing the classes in the nodes directly descending from Gr (see the Appendix for the proofs). Indeed,

this condition is expressed as statement 1 of Proposition 3.1, whereas the first and the fourth coher-

ence properties for hierarchical multiple criteria sorting methods correspond to statements 2 and 3,

respectively.

Proposition 3.1. The three following statements are equivalent:

1. In each node Gr, r ∈ IG \ EL, brh =

n(r)∑
j=1

b
(r,j)
h for all h = 0, . . . , p,

2. In each node Gr, r ∈ IG \ EL, if a −−−→
(r,j)

[Chj
, Ckj ] for all j = 1, . . . , n(r), then a −→

r
[Ch, Ck]
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where h = min
j=1,...,n(r)

hj , and k = max
j=1,...,n(r)

kj,

3. In each node Gr, r ∈ IG \ EL, if a −−−→
(r,j)

Ch for all j = 1, . . . , n(r) then a −→
r
Ch.

Since we would like our hierarchical sorting approach to respect points 2 and 3 of Proposition 3.1,

we shall assume that brh =

n(r)∑
j=1

b
(r,j)
h in each node Gr, r ∈ IG \EL. As a consequence of this choice, it is

sufficient to define the value thresholds in nodes from the last but one level of the hierarchy, because

for any other higher level node Gr, r ∈ IG \ {EL ∪ LBO} it holds that

brj =
∑

s∈LB(Gr)

bsj , for all j = 0, . . . , p.

In order to construct the additive value function and define the value thresholds, one can use a direct

or an indirect approach. In the former case, the DM is asked to specify explicitly the parameters of

the model (value thresholds in this case), following an direct assessment protocol designed specifically

for the type of model under consideration (for example of such a protocol for additive value models see

[3]). On the other hand, in an indirect approach [21] the DM is asked to provide some comprehensive

preference information on the assignment of some reference alternatives (i.e., taking into account the

full set of criteria present in the hierarchy) and/or partial preference information (i.e., considering a

particular dimension of the problem, corresponding to criterion Gr, being an intermediate node in

the hierarchy tree). With such preference information at hand, it is possible to infer values for the

parameters of the model that are compatible with the judgments provided by the DM. This can be

achieved considering the following set of constraints (in accordance with [20], henceforth (U, b) will be

used to denote a value function and a set of value thresholds compatible with the preferences of the

DM, whereas U will denote the set of all compatible instances of this model):
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Ur(a) ≥ brh−1,

Ur(a)− brh ≤ −ε

 if a −→
r
Ch

Ur(a) ≥ brh−1, if a −→
r
C≥h

Ur(a)− brh ≤ −ε, if a −→
r
C≤h

Ur(a) ≥ brh1−1,

Ur(a)− brh2
≤ −ε

 if a −→
r

[Ch1 , Ch2 ]

ut(x
k
t ) ≥ ut(xk−1t ), k = 1, . . . ,mt, for all t ∈ EL,

ut(x
0
t) = 0, for all t ∈ EL, and

∑
t∈EL

ut(x
mt
t ) = 1

bsh ≥ bsh−1 + ε, h = 1, . . . , p, for all s ∈ LBO,

bs0 = 0, and bsp =
∑

t∈E(Gs)

ut(x
mt
t ), for all s ∈ LBO,

brh =
∑

s∈LB(Gr)

bsh, for all h = 0, . . . , p, and for all r ∈ IG \ {EL ∪ LBO}



EAR

where xkt , k = 0, . . . ,mt, are the mt + 1 different performances on elementary criterion gt attained

by alternatives in A (arranged in ascending order); x0t and xmt
t are, respectively, the worst and the

best performances of alternatives on elementary criterion gt, while ε is an auxiliary variable used to

translate the strict inequality constraints to weak inequality constraints.

If EAR
is feasible and ε∗ > 0, where ε∗ = max ε subject to EAR

, then there exists at least

one instance (U, b) compatible with the preferences provided by the DM. The readers interested to

conditions ensuring the existence of an additive representation of ordered partitions could look at [3].

Remark 3.1. Let us observe that if the number of classes considered in each node Gr is different

(different values of pr for all Gr), then the direct and the indirect approaches explained above remain

valid. In particular, in the indirect approach, one has to consider the set of constraints EAR

1 obtained

from EAR
by replacing the last three constraints with the following ones:

brh ≥ brh−1 + ε, h = 1, . . . , pr, for all r ∈ IG \ EL, (2)

br0 = 0, and brpr =
∑

t∈E(Gr)

ut(x
mt
t ), for all r ∈ IG \ EL. (3)

The last constraint in EAR
does not hold anymore (except for the case h = 0 and h = pr in consequence
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of eq. (3)), since the number and meaning of the different thresholds obviously depend on the number

of classes to which each alternative can be assigned in node Gr. For example, let us consider a small

hierarchy in which a root criterion G0 has subcriteria G1 and G2, and each alternative can be assigned

to two classes in node G0 (p0 = 2) while it can be assigned to three and four classes in nodes G1 and

G2, respectively (p1 = 3 and p2 = 4). In this case, there will be three value thresholds in node G0({
b00, b

0
1, b

0
2

})
, four value thresholds in node G1

({
b10, b

1
1, b

1
2, b

1
3

})
, and five value thresholds in node G2({

b20, b
2
1, b

2
2, b

2
3, b

2
4

})
.

4 MCHP and the UTADISGMS method

In general, more than one instance of the preference model could be compatible with the preference

information provided by the DM. Each of these instances restores the given information in the same

way, but each one of them could provide different recommendations on alternatives outside the ref-

erence set. In this case, choosing a single compatible instance of the preference model may lead to a

loss of possibly important information. For this reason, Robust Ordinal Regression (ROR) [5, 6, 19]

takes into account the whole set of instances of the preference model compatible with the preference

information provided by the DM, by building necessary and possible preference relations that hold for

all or for at least one compatible instance of the preference model.

In the MCHP context, the DM could be therefore interested to know not only to which class an

alternative could be necessarily or possibly assigned taking into account the whole set of criteria, but

also to which class it could be necessarily or possibly assigned with respect to a criterion corresponding

to a particular node of the hierarchy tree.

In this section, we extend UTADISGMS [20] to the MCHP context, by reformulating the definition

of the necessary and possible assignments as follows:

Definition 4.1. In any node Gr, (r ∈ IG \ EL) in the hierarchy tree,

• a ∈ A is necessarily assigned to at least class Ch, denoted by a
N−→
r
C≥h, iff Ur(a) ≥ brh−1 for all

compatible (U, b),

• a ∈ A is possibly assigned to at least class Ch, denoted by a
P−→
r
C≥h, iff Ur(a) ≥ brh−1 for at least

one compatible (U, b),

• a ∈ A is necessarily assigned to at most class Ch, denoted by a
N−→
r
C≤h, iff Ur(a) < brh for all

compatible (U, b),
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• a ∈ A is possibly assigned to at most class Ch, denoted by a
P−→
r
C≤h, iff Ur(a) < brh for at least

one compatible (U, b).

The above necessary and possible preference relations can be computed as follows:

• a N−→
r
C≥h iff the set of constraints EN

(
a −→

r
C≥h

)
is infeasible or if ε

(
a

N−→
r
C≥h

)
≤ 0, where

EN
(
a −→

r
C≥h

)
= EAR ∪

{
Ur(a) + ε ≤ brh−1

}
and ε

(
a

N−→
r
C≥h

)
= max ε, s.t. EN

(
a −→

r
C≥h

)
;

• a P−→
r

C≥h iff the set of constraints EP
(
a −→

r
C≥h

)
is feasible and ε

(
a

P−→
r
C≥h

)
> 0, where

EP
(
a −→

r
C≥h

)
= EAR ∪

{
Ur(a) ≥ brh−1

}
and ε

(
a

P−→
r
C≥h

)
= max ε, s.t. EP

(
a −→

r
C≥h

)
;

• a N−→
r
C≤h iff the set of constraints EN

(
a −→

r
C≤h

)
is infeasible or if ε

(
a

N−→
r
C≤h

)
≤ 0, where

EN
(
a −→

r
C≤h

)
= EAR ∪ {Ur(a) ≥ brh} and ε

(
a

N−→
r
C≤h

)
= max ε, s.t. EN

(
a −→

r
C≤h

)
;

• a P−→
r

C≤h iff the set of constraints EP
(
a −→

r
C≤h

)
is feasible and ε

(
a

P−→
r
C≤h

)
> 0, where

EP
(
a −→

r
C≤h

)
= EAR ∪ {Ur(a) + ε ≤ brh} and ε

(
a

P−→
r
C≤h

)
= max ε, s.t. EP

(
a −→

r
C≤h

)
.

Robust hierarchical multiple criteria sorting methods should satisfy some desirable properties.

The first two properties are logical properties, that, in fact, have to be satisfied even when there is no

hierarchical structure. These properties state that for all a ∈ A and for any non-elementary criterion

Gr,

1R) either a is necessarily assigned to at least class Ch, or a is possibly assigned to at most class

Ch−1, h ∈ {2, . . . , p},

2R) either a is necessarily assigned to at most class Ck, or a is possibly assigned to at least class

Ck+1, k ∈ {1, . . . , p− 1}.

Conditions 1R) and 2R) can be considered as completeness properties for robust hierarchical multiple

criteria sorting corresponding to completeness properties for “flat” (non-hierarchical) sorting problems,

according to which for all a ∈ A:

1B) either a is assigned to at least class Ch, or a is assigned to at most class Ch−1, h ∈ {2, . . . , p},

2B) either a is assigned to at most class Ck, or a is assigned to at least class Ck+1, k ∈ {1, . . . , p− 1}.

On the basis of this observation, we shall call properties 1R) and 2R), first and second completeness

properties of robust hierarchical multiple criteria sorting. Observe that removing the reference to node

Gr of the hierarchy tree, the first and the second completeness properties should hold for any robust

multiple criteria sorting method.
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Other desirable properties are related to the hierarchical nature of the robust sorting, and can be

seen as counterparts of the robust multiple criteria sorting of the coherence properties considered in

section 3 for non-hierarchical multiple criteria sorting. The coherence properties for robust hierarchical

multiple criteria sorting methods that we shall consider are the following:

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr, then it

is necessarily assigned to at least class Ch in node Gr. For example, if student S is necessarily

assigned to at least class medium in both Algebra and Analysis, then S has to be assigned to

at least class medium also in the node of Mathematics. Let us call this property first coherence

property for robust hierarchical multiple criteria sorting methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr, then it

is necessarily assigned to at most class Ck in node Gr. For example, if student S is necessarily

assigned to at most class moderate in both Algebra and Analysis, then S has to be assigned

to at most class moderate also in the node of Mathematics. Let us call this property second

coherence property for robust hierarchical multiple criteria sorting methods.

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr, with

the possible exception of node j for which a is possibly assigned to at least class Ch, then a

is possibly assigned to at least class Ch in node Gr. For example, if student S is assigned to

at least class medium necessarily in the node of Algebra, and possibly in the node of Analysis,

then S has to be possibly assigned to at least class medium also in the node of Mathematics.

Let us call this property third coherence property for robust hierarchical multiple criteria sorting

methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr, with

the possible exception of node j for which a is possibly assigned to at most class Ck, then a is

possibly assigned to at most class Ck in node Gr. For example, if student S is assigned to at most

class moderate necessarily in the node of Algebra, and possibly in the node of Analysis, then

S has to be possibly assigned to at most class moderate also in the node of Mathematics. Let

us call this property fourth coherence property for robust hierarchical multiple criteria sorting

methods.

Proposition 4.1 given below says that the above two completeness properties, as well as the four

coherence properties hold for the hierarchical UTADISGMS we are proposing. Notice that the four
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coherence properties are satisfied because statement 1 in Proposition 3.1 holds, i.e., because the value

thresholds separating the classes in node Gr are equal to the sum of corresponding value thresholds

separating the classes in all nodes directly descending from Gr.

Proposition 4.1. In any node Gr, r ∈ IG \ EL, of the hierarchy tree,

1. For all a ∈ A, and h = 2, . . . , p, either a
N−→
r
C≥h or a

P−→
r
C≤h−1,

2. For all a ∈ A, and k = 1, . . . , p− 1, either a
N−→
r
C≤k or a

P−→
r
C≥k+1,

3. If a
N−−−→

(r,j)
C≥hj

, j = 1, . . . , n(r), then a
N−→
r
C≥h where h = min

j=1,...,n(r)
hj,

4. If a
N−−−→

(r,j)
C≤kj , j = 1, . . . , n(r), then a

N−→
r
C≤k where k = max

j=1,...,n(r)
kj,

5. If a
N−−−→

(r,j)
C≥hj

, j ∈ {1, . . . , n(r)} \
{
j
}

and a
P−−−→

(r,j)
C≥hj

, then a
P−→
r
C≥h where h = min

j=1,...,n(r)
hj,

6. If a
N−−−→

(r,j)
C≤kj , j ∈ {1, . . . , n(r)} \

{
j
}

, and a
P−−−→

(r,j)
C≤kj then a

P−→
r
C≤k where k = max

j=1,...,n(r)
kj.

An obvious consequence of Proposition 4.1 is that if a
N−−−→

(r,j)
Ch, j = 1, . . . , n(r), then a

N−→
r
Ch.

In order to possibly or necessarily assign an alternative a ∈ A to an interval of classes in node Gr

of the hierarchy tree, the following indices can be defined:

LU ,Pr (a) = max

(
{1} ∪

{
h ∈ H : a

N−→
r

C≥h

})
, RU ,Pr (a) = min

(
{p} ∪

{
h ∈ H : a

N−→
r

C≤h

})
(4)

LU ,Nr (a) = max

(
{1} ∪

{
h ∈ H : a

P−→
r

C≥h

})
, RU ,Nr (a) = min

(
{p} ∪

{
h ∈ H : a

P−→
r

C≤h

})
. (5)

On the basis of Proposition 4.1, we can prove the following results:

Proposition 4.2. In any node Gr (r ∈ IG \ EL) of the hierarchy tree, and a ∈ A,

1. LU ,Pr (a) ≥ min
j=1,...,n(r)

{
LU ,P(r,j)(a)

}
,

2. RU ,Pr (a) ≤ max
j=1,...,n(r)

{
RU ,P(r,j)(a)

}
.
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5 Application to bank performance rating

5.1 Problem context

In order to illustrate the applicability of the proposed approaches, this section presents results from

a case study involving bank performance rating, in a context of prudential supervision. Under the

existing financial regulatory framework of Basel II, the banking supervisory authorities of each country

(e.g. central banks) should conduct performance assessments on a regular basis for banks operating

in the country, in order to ensure the stability of the country’s banking system. Given that bank

defaults are rare events, adequate historical data are usually not available to fit statistical models

for estimating the likelihood of financial distress for banking institutions. Therefore, supervisors

mainly rely on judgmental peer assessment systems, which take into account all aspects of a bank’s

operations and risk profile [24, 26, 29]. The application of the MCDA is well-suited in this context,

as it provides bank analysts and supervisors with a formal framework and analytic techniques for

constructing composite performance indicators, exploring the trade-offs between different risk and

performance factors, conducting robustness checks, and exploring stress testing scenarios.

Typically, bank rating systems consider six major dimensions, which define a comprehensive as-

sessment framework referred to as CAMELS:

1) capital adequacy,

2) asset quality,

3) management competence,

4) earning generating ability,

5) liquidity,

6) sensitivity to market risks.

These dimensions are further decomposed into elementary criteria, which are specified according

to particular characteristics of the banking system in a country. Thus, the problem has a hierarchical

structure and the bank rating assessment process should provide results not only at the comprehensive

level, but also at each one of the above main dimensions. The results are commonly expressed in a

5-point rating scale. Thus, the context of bank rating fits well the MCHP sorting framework developed

in this study.
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5.2 Data and criteria

The data used in the analysis are taken from [11] and they originate from the Bank of Greece (the su-

pervisory authority responsible for the Greek banking system). They involve 18 Greek banks between

2001 and 2005 (overall 85 bank-year observations1, which correspond to the alternatives). The banks

have been evaluated on 31 criteria structured in a hierarchical way following the CAMELS frame-

work, as shown in Figure 1. The six CAMELS dimensions (Capital-CA, Assets-AS, Management-MC,

Earnings-ER, Liquidity-LQ, and Sensitivity to market risks-SM) are the first level criteria, each ana-

lyzed through multiple subcriteria in the subsequent level. These subcriteria serve as the elementary

decision attributes in the MCHP framework, for which the data are available for the banks in the

sample.

5) liquidity,

6) sensitivity to market risks.

These dimensions are further decomposed into elementary criteria, which are specified according

to particular characteristics of the banking system in a country. Thus, the problem has a hierarchical

structure and the bank rating assessment process should provide results not only at the comprehensive

level, but also at each one of the above main dimensions. The results are commonly expressed in a

5-point rating scale. Thus, the context of bank rating fits well the MCHP sorting framework developed

in this study.

5.2 Data and criteria

The data used in the analysis are taken from [10] and they originate from the Bank of Greece (the su-

pervisory authority responsible for the Greek banking system). They involve 18 Greek banks between

2001 and 2005 (overall 85 bank-year observations,1 which correspond to the alternatives). The banks

have been evaluated on 31 criteria structured in a hierarchical way following the CAMELS frame-

work, as shown in Figure 1. The six CAMELS dimensions (Capital-CA, Assets-AS, Management-MC,

Earnings-ER, Liquidity-LQ, and Sensitivity to market risks-SM) are the first level criteria, each ana-

lyzed through multiple subcriteria in the subsequent level. These subcriteria serve as the elementary

decision attributes in the MCHP framework, for which the data are available for the banks in the

sample.

Figure 1: Hierarchy of Criteria
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The definition of the elementary criteria is given in Table 1. These include 17 financial ratios that

describe quantitative aspects of bank operation, whereas the remaining 14 criteria describe qualitative

issues (but these are still measured on a 0.5 − 5.5 cardinal scale defined by analysts at the Bank of

Greece, with lower values indicating higher performance). Criteria whose type is indicated in Table 1

as “max” are positively related to the performance of banks, whereas minimization criteria are those

that are negatively related to bank performance.

1For some banks the data were not available for all years.
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The definition of the elementary criteria is given in Table 1. These include 17 financial ratios that

describe quantitative aspects of bank operation, whereas the remaining 14 criteria describe qualitative

issues (but these are still measured on a 0.5 − 5.5 cardinal scale defined by analysts at the Bank of

Greece, with lower values indicating higher performance). Criteria whose type is indicated in Table 1

as “max” are positively related to the performance of banks, whereas minimization criteria are those

that are negatively related to bank performance.

For each elementary criterion gt, we considered a linear marginal value function:

ut(a) = ut(x
mt
t )

gt(a)− x0t
xmt
t − x0t

(6)

where the best (xmt
t ) and worst (x0t) performances are defined as follows:

Maximization criteria: xmt
t = max {gt(a), a ∈ A} and x0t = min {gt(a), a ∈ A}

Minimization criteria: xmt
t = min {gt(a), a ∈ A} and x0t = max {gt(a), a ∈ A} .

1For some banks the data were not available for all years. The data are available at
http://www.fel.tuc.gr/BankData.xlsx
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Table 1: Evaluation criteria and their indices used in Figure 1

Category Index Abbr. Type Index Criterion name

Capital 1 CA1 Max (1, 1) Capital adequacy ratio
CA2 Min (1, 2) TIER II capital / TIER I
CA3 Min (1, 3) Qualitative∗

Assets 2 AS1 Min (2, 1) Risk-weighted assets / Assets
AS2 Min (2, 2) (Non performing loans – Provisions) / Loans
AS3 Min (2, 3) Large exposures / (TIER I + TIER II capital)
AS4 Min (2, 4) [0.5(Non performing loans) – Provisions]/Equity
AS5 Min (2, 5) Qualitative∗

Management 3 MC1 Min (3, 1) Operating expenses / Operating income
MC2 Min (3, 2) Staff cost / Assets
MC3 Max (3, 3) Operating income / Business units
MC4 Min (3, 4) Top management competencies, qualifications and continuity
MC5 Min (3, 5) Managers’ experience and competence
MC6 Min (3, 6) Resilience to change, strategy, long term horizon
MC7 Min (3, 7) Management of information systems
MC8 Min (3, 8) Internal control systems
MC9 Min (3, 9) Financial risk management system
MC10 Min (3, 10) Internal processes charter - implementation monitoring
MC11 Min (3, 11) Timely and accurate data collection
MC12 Min (3, 12) Information technology systems

Earnings 4 ER1 Max (4, 1) Net income / Assets
ER2 Max (4, 2) Net income / Equity
ER3 Max (4, 3) Interest revenue / Assets
ER4 Max (4, 4) Other operating revenue / Assets
ER5 Min (4, 5) Qualitative∗

Liquidity 5 LQ1 Max (5, 1) Cash / Assets
LQ2 Min (5, 2) (Loans – Provisions) / Deposits
LQ3 Min (5, 3) Real funding from credit institutions / Assets
LQ4 Min (5, 4) Qualitative∗

Market 6 SM1 Min (6, 1) Risk-weighted assets II / Risk-weighted Assets (I & II)
SM2 Min (6, 2) Qualitative∗

∗ Undisclosed criteria related to qualitative aspects of the banks’ operation

It should be noted that the use of linear marginal value functions in the setting of this case study, is

actually in accordance with the CAMELS modeling framework as implemented by the Bank of Greece.

Furthermore, similar linear scoring and risk monitoring systems are widely used by bank supervisory

agencies worldwide.

In accordance with the policy followed by analysts at the Bank of Greece during the period under

consideration, the following points are taken into consideration:

• The importance of quantitative criteria should be at least equal to 70%. Even though criteria

related to qualitative aspects of bank operation are particularly useful for describing important

performance and risk factors in the medium-long term, they clearly entail some subjectivity
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on the way they are modeled and assessed. On the other hand, financial quantitative criteria,

despite their shortcomings (e.g., potential manipulation of accounting reporting standards), are

hard data widely used in prudential supervision research and practice all over the world. In that

regard, this requirement is imposed to ensure that the resulting evaluation does not overweight

the qualitative aspects of bank operation over the actual financial results.

Denoting by IGQual
the set of indices of qualitative elementary criteria, that is

IGQual
= {(1, 3), (2, 5), (4, 5), (5, 4), (6, 2)}

and by IGQuan
the set of indices of all quantitative elementary criteria (IGQual

∪ IGQuan
= IG),

the previous piece of preference information can be translated to the following constraint:

∑
t∈IGQuan

ut(x
mt
t ) ≥ 0.7. (7)

This implies that a bank having the best performance on all quantitative elementary criteria

should have a comprehensive value not less than 0.7.

• Capital and assets are the most important dimensions, whereas market risk is the least important

one. Capital adequacy and asset quality are critical factors for ensuring the financial soundness

of a bank. They are both closely monitored on a regular basis by supervisors, and actions are

taken whenever a bank does not have adequate capital (see for example the stress tests conducted

by the European Banking Authority) or when its loan portfolio is particularly troublesome.

Liquidity is also an important issue, but during the period of the analysis (2001–2005) there were

no indications that liquidity risk could be a critical factor in the foreseeable future for Greek

banks. Therefore, liquidity is considered to be of lower importance for this analysis, compared

to capital adequacy and asset quality. The same applies to earning power and management

competence, too. Earning power is an important dimension for the success of banking institutions

as it indicates how they perform in multiple areas. Furthermore, a strong stream of earnings

constitutes the first line of defense against loan losses. However, the period of the analysis

was a time of transition for Greek banks in terms of their profitability, mainly due to the

introduction of the Euro and the adoption of the international accounting standards by the

largest banks. Due to the challenges that these issues created in assessing the earnings of Greek
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banking institutions over the period under consideration, its relative importance was set below

capital and assets. On the other hand, management competence is mostly related to qualitative

aspects of bank operation, which, as explained above, are given lower priority. Finally, the data

set only involves commercial banks, whose exposure to market risks is limited. Therefore, the

market risk dimension is assumed to be the least important one among the six criteria categories.

Using the notation introduced in section 2 and indices of criteria shown in Table 1, the given

three pieces of preference information can be translated to the following sets of constraints

∑
t∈E(G1)

ut(x
mt
t ) ≥



∑
t∈E(G3)

ut(x
mt
t ) + ε,

∑
t∈E(G4)

ut(x
mt
t ) + ε,

∑
t∈E(G5)

ut(x
mt
t ) + ε,

∑
t∈E(G6)

ut(x
mt
t ) + ε,

∑
t∈E(G2)

ut(x
mt
t ) ≥



∑
t∈E(G3)

ut(x
mt
t ) + ε,

∑
t∈E(G4)

ut(x
mt
t ) + ε,

∑
t∈E(G5)

ut(x
mt
t ) + ε,

∑
t∈E(G6)

ut(x
mt
t ) + ε,

(8)

∑
t∈E(G6)

ut(x
mt
t ) ≤



∑
t∈E(G3)

ut(x
mt
t )− ε,

∑
t∈E(G4)

ut(x
mt
t )− ε,

∑
t∈E(G5)

ut(x
mt
t )− ε,

(9)

where the constraints (8) say that criteria categories capital and assets are more important than the

other four criteria categories, while the constraints (9) say that market risk is the least important

criteria category. Let us notice that the constraints saying that market risk is less important than

capital and assets are missing in (9) since these constraints are already present in (8).

5.3 Discussion of results

In addition to the above preference information, an expert banking analyst (DM) familiar with the

Greek banking sector provided global assessments for a small set of banks, as shown in Table 2. These

are banks for which the DM was familiar with their strengths and weaknesses over the examined

period. For example, alternatives A3, A4, and A5 correspond to a leading Greek bank in terms of its

market niche and financial strength over a three years period (2003–2005), alternatives A7, A8, and
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A9 involve a state-owned bank being in transition towards privatization, whereas A16, A17, and A18

correspond to a recently privatized bank that faced significant operating challenges moving to a new

corporate plan.

Table 2: Initial set of the expert’s comprehensive judgments

Alternatives Class

A16, A17, A18 C1

A10, A21, A22 C2

A7, A8, A9 C3

A1, A2, A6 C4

A3, A4, A5 C5

Since each bank can be assigned to one of five classes at the level of macro-criteria and at the compre-

hensive level, then six thresholds have to be specified for each macro-criterion (bs0, b
s
1, b

s
2, b

s
3, b

s
4, b

s
5),

such that bs0 = 0 and bs5 =
∑

t∈E(Gs)

ut(x
mt
t ) for all s ∈ {1,2,3,4,5,6}. Consequently, following Propo-

sition 3.1, the thresholds for criterion G0 are obtained as the sum of the corresponding thresholds for

the six macro-criteria, that is b0h =

6∑
s=1

bsh, for all h = 0, . . . , 5.

Having defined the thresholds for the six macro-criteria, the preferences shown in Table 2 are trans-

lated to constraints as explained in section 3. For example, the assignment at a comprehensive level

of bank Ax to class Ch is translated to the constraints

U0(Ax) ≥ b0h−1,

U0(Ax)− b0h ≤ −ε.

 (10)

Consequently, the set EAR
containing the constraints translating the preferences of the DM and the

technical constraints will be the following:

(7)− (10),

ut(x
0
t) = 0, for all t ∈ EL, and

∑
t∈EL

ut(x
mt
t ) = 1

ut(x
mt
t ) ≥ ut(x0t), for all t ∈ EL ,

bsh ≥ bsh−1 + ε, h = 1, . . . , 5, for all s ∈ {1, . . . ,6} ,

bs0 = 0, and bs5 =
∑

t∈E(Gs)

ut(x
mt
t ), for all s ∈ {1, . . . ,6} ,

b0h =
∑

s∈{1,...,6}

bsh, for all h = 0, . . . , 5.


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Note that in this case we do not need the monotonicity constraint ut(x
k
t ) ≥ ut(x

k−1
t ), k = 1, . . . ,mt,

for any t ∈ EL because, as shown in equation (6), we are considering a linear marginal value function

for each elementary criterion, and this function is defined by the marginal value ut(xt) and by the

worst and the best performances of the banks on each elementary criterion.

Solving the LP problem ε∗ = max ε, s.t. EAR
, we find that EAR

is feasible and ε∗ > 0. This leads

to the conclusion that there are multiple different instances of the preference model compatible with

the above comprehensive judgments and preferential inputs. Clearly, the choice of a single decision

instance from such limited information is likely to lead to conclusions that are not robust. Combining

ROR with the modeling framework of the UTADIS method under the hierarchical structuring of

the family of criteria, enables the formulation of results taking into account the full set of possible

instances.

Applying (4), we computed the lowest and the highest possible class assignment for each alternative.

Apart from the seven banks shown in Table 3, all the others could be possibly assigned to the whole

range of classes. Moreover, applying (5), we computed the lowest and highest necessary assignment

for each alternative. It appears that the set of necessary assignments is empty for all banks, since

LU ,N0 > RU ,N0 for all of them. It is evident that at this stage of the analysis, the obtained results are

not conclusive enough.

Table 3: Results after the first stage

Alternatives
[
LU ,P0 , RU ,P0

]
A23, A54, A61, A68 [C1, C4]
A36, A80, A81 [C2, C5]

In order to get a more clear recommendation, the expert analyst has to provide more detailed

preference information. Then, the DM provided partial judgments involving the main CAMELS

dimensions, as shown in Table 4. These partial judgments are easier for the DM to define, as each

main dimension comprises a much smaller set of criteria compared to the 31 criteria required for

the comprehensive assignment decisions provided in the previous stage. The calculation of the new

recommendation is performed analogously to the first stage.

With the new preference information, the integration of MCHP with the UTADISGMS method was

employed again to get a new set of assignments. Table 5 reports the number of non-reference cases

(i.e., banks-year observations not included in the assignments provided by the expert analyst), by

the type of their assignment result (range of classes) at the comprehensive level and at all lower-level
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Table 4: Information provided by the expert in the second stage

Capital adequacy Asset quality Management competence

Alternative Assignment Alternative Assignment Alternative Assignment

A67 [C1, C2] A60 [C1, C2] A17 C2

A19 [C2, C3] A41 [C2, C3] A60 C3

A7 C3 A11 [C3, C4] A1 C4

A1 C4 A5 [C4, C5]
A4 C5

Earning power Liquidity Market risks

A19 C1 A82 C1 A76 [C1, C2]
A20 C2 A28 C2 A33 C3

A3 C3 A79 C3 A22 C4

A26 C4 A78 [C3, C4] A47 [C4, C5]
A36 C5 A55 C5

dimensions. In addition, the table also presents the mean range of the assignments as an indicator of

the imprecision that describes the obtained results. The mean range is calculated from the number of

classes in the sets of possible assignments, averaged over all non-reference bank-year observations.

Table 5: Summary of possible assignments from the second stage of the analysis (non-reference alter-
natives)

Assignments Overall CA AS MC ER LQ SM

C1 – – 1 – – – –
[C1, C2] – – 1 – 5 2 2
[C1, C3] – – – 4 10 26 5
[C1, C4] 11 – 2 22 9 8 11
[C1, C5] 40 – 56 18 28 25 –
C2 – 2 – – – – –

[C2, C3] – 13 – – – – –
[C2, C4] – 2 – 7 – – –
[C2, C5] 16 28 17 24 15 19 –
[C3, C5] 3 34 4 7 9 – 33
[C4, C5] – 3 – – 3 – 30
C5 – – – – 1 – –

Mean range 4.5 3.1 4.6 4.0 3.9 3.9 2.7

It is evident that even with the new information, the sorting decisions at the comprehensive level

are still characterized by ambiguity, as 40 (out of 70) cases can be assigned in any of the five rating

classes. The examination of the partial assignments for each of the six main dimensions provides some

insights on the decomposition of the banks’ comprehensive performance and the sources of ambiguity

in the assignments at the comprehensive level.
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In particular, the partial assignments for capital adequacy (CA) and sensitivity to market risks

(SM) are more precise compared to the other dimensions. In terms of capital adequacy, all banks are

consistently rated in class C2 or better (throughout the years), with 37 cases being in at least medium

condition (i.e., belonging to categories C3 − C5). This result is concordant with the characteristics of

Greek banks during the period of the analysis, as prior to the outbreak of the Greek sovereign debt

crisis in 2010, they have been generally well capitalized.

As far as their sensitivity to market risks is concerned, the banks also performed rather well over

the period under consideration. In particular, 63 cases are considered as having at least medium

performance on this dimension. There are, however, a few cases corresponding to banks that seem to

be exposed to market risks (i.e., their assignment includes the high risk class C1). These are mostly

smaller banks, which have indeed developed some risky investment activities and financial products

during that period.

Asset quality seems to be the main factor explaining the ambiguity in the assignment at the

comprehensive level. In the majority of cases (56 out of 81), the assignments in this dimension span

all five rating classes, which indicates that in order to obtain more precise conclusions on the asset

quality dimension, further analysis is required using additional input information. The same applies

(yet to a smaller extend) to management competence, earnings, and liquidity.

A further examination of the time trends in the range of the assignments over time (Figure 2)

reveals that the imprecision in the assignments at the comprehensive level has increased over time.

This can be interpreted as a warning signal, as it implies that deriving clear conclusions on the overall

performance of the banks became more difficult over the years. This trend was primarily driven by the

increasing ambiguity in the evaluations with respect to capital adequacy (after 2002), asset quality

(mostly in 2001–2002), and management competence. On the other hand, the imprecision in the

evaluations with respect to the market risk dimension followed a declining trend, as the introduction

of Greece to the Eurozone area in 2002 and the improving conditions in the global financial markets

(particularly after 2003) contributed to the minimization of the exposure of Greek banks to external

market risks.

The information derived from the imprecise assignments of the UTADISGMS method can be further

enriched and complemented through the construction of the most discriminant additive value model,

which is obtained through the solution of the optimization problem: max ε, subject to EAR
. Table

6 presents the number of assignments with the obtained model, both at the comprehensive level

and at the level of the six performance dimensions. According to the results, there are six cases

20



1

2

3

4

5

Global CA AS MC ER LQ SM

M
ea

n 
ra

ng
e 

of
 a

ss
ig

nm
en

ts

2001 2002 2003 2004 2005

Figure 2: Mean ranges of the assignments over time

Table 6: Summary of assignment results with the most discriminant value function (number of assign-
ments by each class)

Class Comprehensively CA AS MC ER LQ SM

C1 6 0 26 21 8 20 6
C2 23 22 9 29 24 38 4
C3 19 17 7 30 29 15 15
C4 32 43 7 5 15 8 42
C5 5 3 36 0 9 4 18

involving very high risk banks (class C1), five cases of top performing banks (class C5), whereas most

banks are assigned to classes C2 − C5. The distribution of the assignments for the capital adequacy

dimension resembles the assignment at the comprehensive level, whereas in terms of asset quality it

is interesting to note that there is a considerable concentration in the two extreme rating classes.

This is in accordance with the large number of imprecise assignments in this dimension, as discussed

earlier. In terms of management competence and liquidity there is a concentration in classes C1 −C3

(at most medium performance), whereas the results for market risk verify the remarks made earlier on

the low exposure of Greek banks to external market risks as there is a clear concentration in classes

C4 − C5 (above average performance). The Kendall’s τ rank correlations between the comprehensive

assignment and the partial ones were higher for capital adequacy (0.725) and asset quality (0.653),

which is concordant with the information that the expert analyst provided on the high importance

of these criteria. The correlations of the comprehensive assignment to those of the other dimensions

were lower (0.2−0.3).

Table 7 presents further results on the relationship of the imprecise assignments obtained by

UTADISGMS with the ones of the most discriminant model at the comprehensive level. In particular,
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for banks assigned to different ranges of classes according to UTADISGMS , we report their mean

global values (i.e., performance scores) according to the most representative model (second column),

as well as their distribution in the classes resulting from the most discriminant model (frequencies).

For instance, the mean performance score for banks assigned to the range of classes [C1, C4] is 0.4,

and most of such instances (90.9%) are assigned to class C2 by the most discriminant model. The last

row in the table presents the mean comprehensive value for banks assigned to different classes by the

most discriminant model. The results indicate that most banks assigned to [C1, C4] by UTADISGMS

are considered as low performance banks by the most discriminant model. Banks for which their

assignment is completely imprecise according to UTADISGMS span the whole range of classes with

the most discriminant model, but most of them are assigned to the medium performance class C3. On

the other hand, banks assigned to the range of classes [C2, C5] and [C3, C5] according to UTADISGMS

are assigned to class C4 by the most discriminant model. However, the mean value of banks in [C2, C5]

is 0.567, which is very similar to the mean performance (0.559) of banks assigned to C4 by the most

discriminant model (i.e., they resemble typically good banks), whereas banks assigned to [C3, C5] have

a mean performance value of 0.603, which is higher that the mean of class C4 but lower that the mean

of the top rating class C5 (0.642).

Table 7: The relationship between the results of UTADISGMS and the assignments of the most
discriminant model at the comprehensive level

Most discriminant assignments

Mean value C1 C2 C3 C4 C5

[C1, C4] 0.400 9.1% 90.9% – – –
[C1, C5] 0.483 5.0% 25.0% 40.0% 27.5% 2.5%
[C2, C5] 0.567 – – – 93.8% 6.2%
[C3, C5] 0.603 – – – 100.0% –

Mean value 0.337 0.423 0.482 0.559 0.642

6 Conclusions

Several methods are able to deal with multiple criteria sorting problems, but they all assume a single-

level organization of the family of criteria. In this paper, we proposed an extension of the MCHP

approach to sorting problems with a hierarchical structure of the family of criteria. The MCHP is

a methodology that allows the decomposing of decision making problems into smaller dimensions

(each taking into account different aspects of the problem). In this context, we introduced modeling

22



formulations that allow the inference of a preference model from decision examples through preference

disaggregation techniques based on an additive value function model (UTADIS and UTADISGMS

methods). MCHP combined with UTADIS and UTADISGMS allows the consideration of both global

and partial preference judgments, which adds flexibility to the specification of the input preference

information required in the decision aiding process. The applicability of the MCHP-based methods

was illustrated through an application regarding the assessment of bank performance.

Future research can be extended towards a number of different directions. First, similar approaches

could be considered for other types of preference models for sorting problems, including outranking

relation [4], Choquet integral [13], and rule-based models [18, 28]. That would be particularly useful,

as it would yield a much more general MCHP framework, covering situations where different aspects

of a decision problem require the adoption of different types of models. Group decision making

problems can also be considered in such a context. Combinations with simulation methods [22] could

also be useful to enhance the assignment recommendations with probabilistic information, whereas

further analysis could also focus on building good representative preference models in sorting problems

with hierarchical structure, using the techniques presented in previous studies [12, 14]. In addition

to these methodological extensions, further testing on other case studies and through experimental

computational analyses could provide further insights into the properties of the MCHP-based sorting

schemes. Introduction of procedures guiding the elicitation of preference information by the DM in

the spirit of active learning would also be useful to reduce the cognitive effort required during the

decision aiding process and make such techniques easier to apply in practice.
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“2007-2013” within the project “PON04a2 E SINERGREEN-RES-NOVAE”.

The fourth author wishes to acknowledge financial support from the Polish National Science Centre.

References

[1] S. Angilella, S. Corrente, S. Greco, and R. S lowiński. Multiple Criteria Hierarchy Process for the
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[22] M. Kadziński and T. Tervonen. Stochastic ordinal regression for multiple criteria sorting problems.

Decision Support Systems, 55(11):55–66, 2013.

[23] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs.

J. Wiley, New York, 1993.

[24] Comptroller of the Currency Administrator of National Banks. Bank supervision pro-

cess. Available at: http://www.occ.gov/publications/publications-by-type/comptrollers-

handbook/banksupervisionprocess.html, 2007.

[25] T.L. Saaty. The Analytic Hierarchy and Analytic Network Processes for the Measurement of

Intangible Criteria and for Decision-Making. In J. Figueira, S. Greco, and M. Ehrgott, editors,

25



Multiple Criteria Decision Analysis: State of the Art Surveys, pages 345–382. Springer, Berlin,

2005.

[26] R. Sahajwala and P. Van den Bergh. Supervisory risk assessment and early warning systems.

Technical Report 4, Bank of International Settlements, Basel, Switzerland, December 2000.
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Appendix

A Proof of Proposition 3.1

Proof. (1) ⇒ (2) Let a −−−→
(r,j)

[
Chj

, Ckj

]
for all j = 1, . . . , n(r). This means that b

(r,j)
hj−1 ≤ U(r,j)(a) <

b
(r,j)
kj

for all j = 1, . . . , n(r). Let us consider h = min
j=1,...,n(r)

hj and k = max
j=1,...,n(r)

kj . For the monotonicity

26



of the thresholds, we shall have for all j = 1, . . . , n(r) that b
(r,j)
h−1 ≤ b

(r,j)
hj−1 ≤ U(r,j)(a) < b

(r,j)
kj
≤ b(r,j)k for

all j = 1, . . . , n(r) and, consequently, b
(r,j)
h−1 ≤ U(r,j)(a) < b

(r,j)
k . Adding up with respect to j, we get

brh−1 =

n(r)∑
j=1

b
(r,j)
h−1 ≤

n(r)∑
j=1

U(r,j)(a) <

n(r)∑
j=1

b
(r,j)
k = brk.

From equation (1), it follows that brh−1 ≤ Ur(a) < brk and, consequently, a −→
r

[Ch, Ck].

(2)⇒ (3) follows directly by setting hj = kj = h for all j = 1, . . . , n(r).

(3)⇒ (1) follows by contradiction, when we suppose that brh 6=
n(r)∑
j=1

b
(r,j)
h for some h. This implies that

brh >

n(r)∑
j=1

b
(r,j)
h or brh <

n(r)∑
j=1

b
(r,j)
h .

Let brh >

n(r)∑
j=1

b
(r,j)
h and a ∈ A an alternative, such that

U(r,j)(a) = b
(r,j)
h for all j = 1, . . . , n(r). (11)

Obviously, this implies that a −−−→
(r,j)

Ch+1 for all j = 1, . . . , n(r). Adding up with respect to j in

the two members of equation (11), we get Ur(a) =

n(r)∑
j=1

U(r,j)(a) =

n(r)∑
j=1

b
(r,j)
h < brh and, consequently,

a −→
r
C≤h, being in contradiction with the hypothesis.

Now, let brh <

n(r)∑
j=1

b
(r,j)
h and a ∈ A an alternative, such that

U(r,j)(a) = b
(r,j)
h − ε

n(r)
for all j = 1, . . . , n(r) (12)

where ε > 0. This choice implies that a −−→
(r,j)

C≤h, for all j = 1, . . . , n(r). Now, adding up with

respect to j in the two members of equation (12), we get Ur(a) =

n(r)∑
j=1

U(r,j)(a) =

n(r)∑
j=1

[
b
(r,j)
h − ε

n(r)

]
=

n(r)∑
j=1

b
(r,j)
h − ε. If we choose ε such that

0 < ε ≤ min

min
{
n(r) ·

[
b
(r,j)
h − b(r,j)h−1

]
, j = 1, . . . , n(r)

}
,

n(r)∑
j=1

b
(r,j)
h − brh


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we obtain that b
(r,j)
h−1 ≤ U(r,j)(a) < b

(r,j)
h for all j = 1, . . . , n(r)2 and Ur(a) > brh

3 implying that

a −−−→
(r,j)

Ch for all j = 1, . . . , n(r) and a −→
r
C≥h+1, thus leading to a contradiction.

B Proof of Proposition 4.1

Proof. 1. Let a ∈ A, r ∈ IG \ EL and h = 2, . . . , p such that not
(
a

N−→
r
C≥h

)
. This means that

there exists at least one (U, b) such that Ur(a) < brh−1. Therefore a
P−→
r
C≤h−1. Let us observe

that a
N−→
r
C≥h and a

P−→
r
C≤h−1 do not hold simultaneously because, otherwise, a couple (U, b)

should exist, such that Ur(a) ≥ brh−1 and Ur(a) < b
r
h−1, which is impossible.

2. Let a ∈ A, r ∈ IG \ EL and k = 1, . . . , p − 1 such that not
(
a

N−→
r
C≤k

)
. This means that there

exists at least one (U, b) such that Ur(a) ≥ brk. Therefore a
P−→
r
C≥k+1. Let us observe that

a
N−→
r
C≤k and a

P−→
r
C≥k+1 do not hold simultaneously because, otherwise, a couple (U, b) should

exist, such that Ur(a) < b
r
k and Ur(a) ≥ brk, which is impossible.

3. a
N−−−→

(r,j)
C≥hj

for all j = 1, . . . , n(r) implies that U(r,j)(a) ≥ b
(r,j)
hj−1 for all (U, b) and for all

j = 1, . . . , n(r). Considering h = min
j=1,...,n(r)

hj , for the monotonicity of the thresholds we have

that U(r,j)(a) ≥ b(r,j)h−1 for all (U, b) and for all j. As a consequence, adding up with respect to j,

we get Ur(a) =

n(r)∑
j=1

U(r,j)(a) ≥
n(r)∑
j=1

b
(r,j)
h−1 = brh−1 for all (U, b), which proves point 2.

4. a
N−−−→

(r,j)
C≤kj for all j = 1, . . . , n(r) implies that U(r,j)(a) < b

(r,j)
kj

for all (U, b) and for all

j = 1, . . . , n(r). Considering k = max
j=1,...,n(r)

kj , for the monotonicity of the thresholds we have

that U(r,j)(a) < b
(r,j)
k for all (U, b) and for all j. As a consequence, adding up with respect to j,

we get Ur(a) =

n(r)∑
j=1

U(r,j)(a) <

n(r)∑
j=1

b
(r,j)
k = brk for all (U, b), which implies point 3.

5. a
N−−−→

(r,j)
C≥hj

, for all j ∈ {1, . . . , n(r)} \
{
j
}

implies that for all (U, b), U(r,j)(a) ≥ b
(r,j)
hj−1 for all

j ∈ {1, . . . , n(r)} \
{
j
}

. Analogously, a
P−−−→

(r,j)
C≥hj

implies that there exists at least one (U, b)

such that U (r,j)(a) ≥ b(r,j)hj−1. Considering h = min
j=1,...,n(r)

hj , for (U, b) and for the monotonicity of

the thresholds we have that U (r,j)(a) ≥ b
(r,j)
h−1 for all j = 1, . . . , n(r). Adding up with respect to

j we get Ur(a) =

n(r)∑
j=1

U (r,j)(a) ≥
n(r)∑
j=1

b
(r,j)
h−1 = b

r
h−1, which proves point 4.

2Because ε ≤ min
j=1,...,n(r)

n(r)
[
b
(r,j)
h − b

(r,j)
h−1

]
.

3Because ε ≤
n(r)∑
j=1

b
(r,j)
h − brh and, consequently

n(r)∑
j=1

b
(r,j)
h − ε > brh
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6. a
N−−−→

(r,j)
C≤kj , for all j ∈ {1, . . . , n(r)} \

{
j
}

implies that for all (U, b), U(r,j)(a) < b
(r,j)
kj

for all

j ∈ {1, . . . , n(r)} \
{
j
}

. Analogously, a
P−−−→

(r,j)
C≤kj implies that there exists at least one (U, b)

such that U (r,j)(a) < b
(r,j)
kj

. Considering k = max
j=1,...,n(r)

kj , for (U, b) and for the monotonicity of

the thresholds we have that U (r,j)(a) < b
(r,j)
k for all j = 1, . . . , n(r). Adding up with respect to

j we get Ur(a) =

n(r)∑
j=1

U (r,j)(a) <

n(r)∑
j=1

b
(r,j)
k = b

r
k, which proves point 5.

C Proof of Proposition 4.2

Proof. 1. Let LU ,P(r,j)(a) = hj for all j = 1, . . . , n(r). This means that a
N−−→

(r,j)

C≥hj
and not

(
a

N−−→
(r,j)

C≥l

)
with l > hj for all j = 1, . . . , n(r). By Proposition 4.1 we get a

N−→
r

C≥h with h = min
j=1,...,n(r)

hj .

As a consequence we get the thesis.

2. Let RU ,P(r,j)(a) = kj for all j = 1, . . . , n(r). This means that a
N−−→

(r,j)

C≤kj and not

(
a

N−−→
(r,j)

C≥l

)
with l > kj for all j = 1, . . . , n(r). By Proposition 4.1 we get a

N−→
r

C≥k with k = max
j=1,...,n(r)

kj .

As a consequence we get the thesis.
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