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Abstract

We propose an interactive multiobjective evolutionary algorithm that attempts to discover the most preferred

part of the Pareto-optimal set. Preference information is elicited by asking the user to compare some

solutions pairwise. This information is then used to curb the set of compatible user’s value functions,

and the multiobjetive evolutionary algorithm is run to simultaneously search for all solutions that could

potentially be the most preferred. Compared to previous similar approaches, we implement a much more

efficient way of determining potentially preferred solutions, that is, solutions that are best for at least one

value function compatible with the preference information provided by the decision maker. For the first time

in the context of evolutionary computation, we apply the Choquet integral as a user’s preference model,

allowing us to capture interactions between objectives. As there is a trade-off between the flexibility of the

value function model and the complexity of learning, a faithful model of user’s preferences, we propose to

start the interactive process with a simple linear model but then to switch to the Choquet integral as soon

as the preference information can no longer be represented using the linear model. An experimental analysis

demonstrates the effectiveness of the approach.

Keywords: Multiobjective Optimization, Evolutionary Algorithms, Interaction, Choquet Integral.

1. Introduction

Multiobjective optimization involves several conflicting objectives that compete for the best solution

in a constrained multidimensional space of decision variables. In general, there is no single optimal solu-

tion (as in single-objective optimization), but a set of alternatives for which it is not possible to improve

one objective without deteriorating another one, called Pareto-optimal solutions. Despite the existence of

multiple Pareto-optimal solutions, in practice, usually only one of these solutions is to be chosen. Thus,
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in multiobjective optimization, there are two equally important tasks: an optimization task for finding

Pareto-optimal solutions by a search procedure, and a decision aiding task for recommending a single most

preferred solution. The “most preferred” refers to the value system of a particular user, also called decision

maker (DM). Thus, decision aiding necessitates some preference elicitation from the user.

As to procedures searching for Pareto-optimal solutions, in the last two decades we have been able to

observe a growing popularity of algorithms adopting the principles of natural evolution. A distinguishing

feature of these evolutionary algorithms is that they work with a population of solutions. This is of particular

advantage in the case of multiobjective optimization, as they can search for several Pareto-optimal solutions

simultaneously in one run, providing the user with a set of feasible solutions to choose from. In the early

stage of development of evolutionary algorithms for multiobjective optimization, the efforts were focused

on efficient generation of the whole set of Pareto-optimal solutions (or of a good approximation thereof),

leaving the decision aiding task to the post-optimization stage. Later, researchers started interlacing the

optimization and preference handling in interactive procedures, which allows to converge more quickly to

the most preferred region of the Pareto-optimal front [8].

Most interactive procedures for multiobjective evolutionary optimization assume a particular mathe-

matical model of user’s preferences. This model drives the search procedure towards the most preferred

Pareto-optimal solutions. The model building involves preference information supplied by the user. In

case of simple preference models, one may expect that the user can provide directly the values of model

parameters. However, simple models, like the weighted sum of objectives, fail to represent more subtle

user’s preferences (see Section 1.3). For this reason, there is a tendency to use more complex preference

models built from indirect preference information which is much easier to elicit by the user than the direct

preference information. In many previous studies on interactive multiobjective optimization, the indirect

preference information had the form of pairwise comparisons of some solutions from a current population

[10, 11, 28, 37]. In particular, the NEMO-I1 method [10] is defining a set of value functions compatible with

the preferences elicited from the DM, expressed in terms of pairwise comparisons of solutions. These com-

patible value functions are used in Robust Ordinal Regression (ROR) [17, 27] to build a necessary preference

relation (%N ) on the current population of solutions. More precisely, a %N b if a is at least as good as b

for all compatible value functions. NEMO-I is adopting the scheme of NSGA-II [19], however substituting

the dominance relation by the necessary preference relation in the ranking. While NEMO-I has shown a

satisfactory convergence to the best compromise solution, the calculation of the necessary preference relation

requires a considerable computational effort. Therefore, in this paper, we are using an alternative method

called NEMO-II, which overcomes the problem of prohibitive computational effort. NEMO-II accepts any

type of value function. We are considering four types of value functions within NEMO-II: linear, additive

piecewise-linear, general additive, and (for the first time in combination with evolutionary multiobjective

algorithms) the Choquet integral [14, 23].

1NEMO: Necessary preference enhanced Evolutionary Multiobjective Optimizer.
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The paper is organized as follows. In Section 2, we review interactive evolutionary multiobjective algo-

rithms (MOEAs). Then, in Section 3, we present the general scheme of NEMO-II. Further, in Section 4, we

describe the four above mentioned value functions. The new procedure, called NEMO-II-Ch, is introduced

in Section 5. A computational experiment with the proposed procedure and its main competitors on a set of

benchmark problems is presented in Section 6. Section 7 summarizes our conclusions and suggests avenues

for future research.

1.1. Interactive Evolutionary Multiobjective Optimization

Evolutionary multiobjective optimization (EMO) has become very popular because of its ability to

generate a set of non-dominated solutions in one run, from which the DM can choose a favorite solution

without eliciting any preference information a priori. Nonetheless, in recent years, there has been a growing

interest in EMO algorithms that are able to take into account user’s preference information in the search

process. This is motivated by the following expected advantages.

1. Instead of a diverse set of solutions (many of them clearly irrelevant to the DM) a search based on

the DM’s partial preferences will provide a more suitable sample of all Pareto-optimal solutions. It

could either be a smaller set of only the most relevant solutions, or a more fine-grained resolution of

the relevant parts of the Pareto frontier.

2. By focusing the search onto the relevant part of the search space, one may expect the optimization

algorithm to find these solutions more quickly.

3. As the number of objectives increases, it becomes more and more difficult to identify and represent

the complete Pareto-optimal frontier. This is partly because of the increasing number of Pareto-

optimal solutions, but also because with an increasing number of objectives almost all solutions in

the population become non-dominated, rendering dominance as selection criterion useless. User’s

preference information allows re-introducing the necessary selection pressure.

The literature contains today quite a few techniques that allow the incorporation of full or partial

preference information into MOEAs, and previous surveys on this topic include [5, 6, 15, 16, 39].

Many of the techniques integrate partial user’s preferences a priori, e.g., by allowing the DM to specify

a reference point [21, 29, 41], maximal and minimal trade-offs [7], or desirability functions [45]. In the

following, we focus on the literature that is most related to our paper, namely interactive approaches that

learn user’s preferences over the course of the optimization based on the DM’s (partial) ranking of small sets

of solutions. They allow to accumulate preference information and thus refine the internal preference model

over time, and because they engage the DM in the optimization process, they initiate a learning process on

the DM’s side as well. These approaches are surveyed in the following, divided into methods that attempt

to learn a representative user’s value function, and those that focus on the set of value functions compatible

with the elicited preference information. Some interactive approaches based on other paradigms include

[18, 31, 41, 43].
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We will use the following notation: A is the set of solutions in a considered population; AR ⊆ A is

the set of reference solutions in population A; f1, . . . , fn are n objective functions such that each solution

a ∈ A is associated with the vector of evaluations (f1(a), . . . , fn(a)). For simplicity, we sometimes only write

aj instead of fj(a). Unless specified otherwise, we suppose, without loss of generality, that the objective

functions have to be maximized.

1.1.1. Approaches to learn a value function representing user’s preferences

The approaches in this subsection use the elicited preference information to derive a single value function

to approximate user’s preferences. Value functions can have different complexity, ranging from simple linear

functions to the highly non-linear functions considered in the non-parametric approaches, such as artificial

neural networks or support vector machines. Most approaches simply use the derived value function for

ranking individuals, sometimes as secondary criterion after non-dominance, but other uses can also be

found.

Phelps and Köksalan [37] proposed an interactive evolutionary algorithm that periodically asks the DM

to compare pairs of solutions. Assuming linear value functions (actually, the objectives are modified before

the optimization to the squared distance from a reference value, which effectively results in ellipsoidal iso-

utility curves), the method determines the most discriminant weight vector compatible with the preference

information. Most discriminant here means the weight vector that maximizes the minimum value difference

over all pairs of solutions compared by the DM.

Denote by �p the binary relation on the set AR, representing the preference information provided by

the user in terms of pairwise comparisons. Then, the following linear program (LP) identifies the most

discriminant value function:

max ε, subject to
n∑
j=1

wjfj(a)−
n∑
j=1

wjfj(b) ≥ ε, for all a �p b

n∑
j=1

wj = 1, wj ≥ 0.


(1)

The resulting weight vector is then used for ranking individuals in the evolutionary algorithm that works

as a single objective evolutionary algorithm between user interactions. If the LP is overconstrained and no

feasible solution is found, the oldest preference information is discarded until feasibility is restored.

Deb et al. [20] derive a polynomial value function model. The user is shown a set of (five in the

paper) solutions and asked to (at least partially) rank them. Then, similar to the approach by Phelps and

Köksalan [37], the most discriminant value function is determined. However, due to the polynomial value

function model, fitting the model to the specified preferences is a non-linear optimization problem, and the

authors propose to use sequential quadratic programming to solve it. The most discriminant value function

is used in the MOEA’s ranking of individuals. Basically, the objective space is separated into two areas: all

4



individuals with an estimated value (according to the approximated value function) better than the solution

ranked second by the DM are assumed to dominate all the solutions with an estimated value worse than the

solution ranked second. The authors additionally use the approximated value function to perform a local

single-objective optimization starting with the solution ranked best by the DM.

Todd and Sen [44] use artificial neural networks to represent the DM’s value function. Periodically,

they present the DM with a set of solutions and ask for a score. The set of solutions is chosen such that

they represent a broad variety regarding the approximated value function, and the estimated best and worst

individual of the population are always included. Information from several interactions is accumulated after

normalizing preference scores.

Another model that allows representation of complex value functions are support vector machines

(SVM). Battiti and Passerini [4] use SVMs in the setting of an interactive MOEA. Periodically, the DM is

presented with a set of solutions and asked to (at least partially) rank them. This information is then used

to train the SVM, with cross-validation employed to select an appropriate kernel. The derived approximate

value function is then used to sort individuals in the same non-dominance rank based on their value according

to the learned value function. The paper examines the influence of the number of solutions shown to the DM

(assuming full ranking) and the number of interactions with the DM. The results suggest that a relatively

large number of solutions need to be ranked for the SVM to learn a useful value function (around 10-20),

but only two interactions with the DM seem sufficient to come very close to results that would have been

obtained had the DM’s ”true value function” been known from the beginning. The authors recommend to

not start interaction until the MOEA has found a reasonable coverage of the entire Pareto frontier, which

somewhat defeats the purpose of narrowing down the search early on. In [12], the approach’s robustness to

incorrect (noisy) DM preferences is examined and it is shown that the algorithm can cope well with noise.

Branke et al. [11] have recently compared various ways to define a representative value function and found

that the function that maximizes the sum of values of individuals in the population actually performed

slightly better than the most discriminant value function, and much better than a value function that

minimizes slope changes. They showed that their approach, called NEMO-0, which is able to learn arbitrary

monotonic additive value functions, can perform well in cases where a linear value function model is not

sufficient to represent the user’s preferences.

1.1.2. Approaches to learn a set of value functions representing user’s preferences

Rather than deriving a single value function, Jaszkiewicz [30] notes that there may be several value

functions compatible with the specified user’s preferences and samples the preference function used in each

generation from the set of preference functions (in this case linear weightings are assumed). The proposed

approach uses the value function also for local search. In the interactive version, preference information

from pairwise comparisons of solutions is used to reduce the set of possible weight vectors.

Greenwood et al. [28] suggested the imprecise value function approach which considers all compatible

linear value functions simultaneously. The procedure asks the user to rank a few solutions, and from this
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derives constraints for the weightings of the objectives consistent with the given ordering. Then, these are

used to check whether there is a feasible linear weighting such that solution a would be preferred to solution

b.

Then, to compare any two solutions a and b from set A, one has to consider all value functions compatible

with the user’s preferences: a is considered at least as good as b if for all compatible value functions a gets

a value not smaller than b. To make this conclusion, the following linear program (LP) has to be solved:

ε∗ = max ε, subject to
n∑
j=1

wjfj(b)−
n∑
j=1

wjfj(a) ≥ ε

n∑
j=1

wjfj(c)−
n∑
j=1

wjfj(d) ≥ ε, for all c �p d

n∑
j=1

wj = 1, wj ≥ 0.


EN (a, b)

(2)

If the set of constraints EN (a, b) is infeasible or ε∗ ≤ 0, it can be concluded that there is no compatible

value function such that b would be strictly preferred to a, and therefore a is at least as good as b for all

compatible value functions. If ε∗ > 0, then we know that b is possibly preferred over a, and we would

proceed by checking whether b is always at least as good as a by solving EN (b, a). Overall, the method

requires to solve one or two LPs for each pair of solutions in the population.

In [34], the value function model is only implicit. Under the assumption of quasi-concave value func-

tions, specified preferences between solutions can be generalized to preference cones. This idea is used by

Fowler et al. [22] to partially rank the non-dominated solutions in an MOEA. The DM is asked to consider

a set of six solutions and specify the best and worst. From this information, six preference cones are derived

(five 2-point cones involving the best and any of the other solutions, and one 6-point preference cone specify-

ing that five solutions are better than the worst). All generated cones are kept throughout the optimization

run, even if the solutions defining the cone are deleted from the population. The solutions shown to the DM

are selected from the set of non-dominated solutions that cannot already be ranked with the existing cones.

Branke et al. [9, 10] proposed a method called NEMO-I. It is similar to the imprecise value function

approach by Greenwood et al. [28], but rather than being restricted to linear value functions, it allows

for piecewise-linear [10] or general monotonic additive [9, 10] value functions. NEMO-I replaces the

use of the dominance relation in the non-dominance sorting step of NSGA-II by the necessary preference

relation. Additionally, it computes a representative value function used for scaling in the crowding distance

calculation.

The procedure used in NEMO-I is computationally very expensive because it requires solving at least

one LP for each pair of solutions (a, b) ∈ A×A. This means that, for a population composed of s solutions,

one has to solve up to s(s − 1) LP problems in each iteration where we get new preference information.

For this reason, in this paper, we are using a new variant, called NEMO-II, which requires significantly less
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computational effort. It has first been proposed in [11] as part of a general framework but it is implemented

here for the first time.

1.2. General scheme of NEMO-II

In this section, we shall introduce the NEMO-II method presented as Algorithm 1. The procedure

starts, as a classical MOEA, by randomly generating a population of solutions. Then, after ordering the

population into fronts by using the dominance relation, two solutions in the first non-dominated front are

chosen randomly to be compared by the user. The preference of the user on this pair of solutions is converted

into a linear inequality involving the unknown value function. After introducing these constraints to the set

of constraints defining the set of value functions compatible with the user’s preferences, one has to check

if the augmented set of constraints is feasible, which means that there exists at least one value function

compatible with the preferences of the user. If this is not the case, a sufficient number of constraints being

the cause of the inconsistency should be removed. For this reason, the procedure starts with removing the

constraints representing the oldest pairwise comparisons. After the set of constraints becomes feasible, the

method tries to reintroduce the removed constraints that were not the cause of the infeasibility in a reverse

order (therefore starting from the newest pairwise comparison) as long as the feasibility is maintained.

The ordering of the population is done as in NSGA-II, putting the solutions into different fronts but,

differently from NSGA-II, NEMO-II does not use the dominance relation. For each solution a in the current

population A, NEMO-II checks whether there exists at least one compatible value function for which a is

the most preferred solution in the current population, by solving the following LP problem

εa = max ε, subject to

U(a)− U(b) ≥ ε for all b ∈ A \ {a} , [C1]

U(c)− U(d) ≥ ε for all c �p d, [C2]

monotonicity and normalization constraints, [C3]

Ea

where constraints [C1] are used to impose that a is the most preferred among the considered solutions; con-

straints [C2] translate the preferences of the user, while constraints [C3] are monotonicity and normalization

constraints depending on the type of the adopted value function that shall be described in the next section.

If Ea is feasible and εa > 0, then there exists at least one value function for which the solution a is the

most preferred solution and, therefore, it is included in the first front. After removing all solutions going

in the first front, the same procedure is applied to build the other fronts until each solution is assigned to

a front. Within the same front, the solutions are ordered by using the crowding distance on the objective

space2.

So, although NEMO-I and NEMO-II both take into account all value functions compatible with the user’s

2The crowding distance of a solution a is the sum of distances between a′s left and right neighbor in each dimension, and
infinity if a is an extreme solution [19].
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preference information, NEMO-I makes pairwise comparisons between solutions, while NEMO-II compares

each solution to all other solutions in the current population. The NEMO-II method has two advantages.

First it substantially reduces the computational effort required. While in NEMO-I the construction of a

front in a population of s individuals requires the solution of up to s(s − 1) LPs, in NEMO-II, the same

can be done by solving only s LP problems, one for each solution in the population. Second, NEMO-II

is slightly more precise in the sense that it only puts solutions in the best rank for which there exists a

value function that makes them most preferred compared to all other solutions in the population, whereas

NEMO-I may include some solutions for which no compatible value function exists that would prefer them

over all other solutions, as long as no other solution is necessarily preferred in pairwise comparisons. Each

front in NEMO-II is a subset of the front in NEMO-I that, in turn, is a subset of the non-dominated front.

A small example may illustrate the difference. Consider the case of three solutions a, b, c, evaluated with

respect to the value functions U1 and U2 as follows: U1(a) = 1, U1(b) = 0.5 and U1(c) = 0; U2(a) = 0,

U2(b) = 0.5 and U2(c) = 1. If U1 and U2 were the only value functions compatible with the user’s preferences,

NEMO-II would not put solution b into the first rank, as it would not be the most preferred under either

value function. According to NEMO-I however, neither a nor c are necessarily preferred over b (because

U2(b) > U2(a) and U1(b) > U1(c)) and thus NEMO-I would put solution b into the first rank.

For these reasons, we base our new algorithm on the NEMO-II paradigm. The procedure is repeated

until the assumed number of iterations has been reached.

Algorithm 1 Basic NEMO-II method

Generate initial population of solutions.
Elicit user’s preferences by asking DM to compare two randomly selected non-dominated solutions.
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at least one
compatible value function. Rank within each front using crowding distance.
repeat

Select individuals for mating.
Generate offspring using crossover and mutation and add them to the population.
if Time to ask the DM then

Elicit user’s preferences by asking DM to compare two randomly selected non-dominated solutions.
if There is no value function remaining compatible with the user’s preferences then

Remove information on pairwise comparisons, starting from the oldest one, until feasibility is
restored and reintroduce them in the reverse order as long as feasibility is maintained.

end if
end if
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at least
one compatible value function. Rank within each front using crowding distance.
Reduce population size back to initial size by removing worst individuals.

until Stopping criterion met.
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1.3. Preference Modeling Using Value Functions

1.3.1. Additive Preference Models

Among many preference models considered in the literature, the most popular is an additive value

function defined on A, such that

U(a) =
n∑
j=1

uj(fj(a)) =
n∑
j=1

uj(aj), (3)

where uj are non-decreasing marginal value functions, uj : Gj → R, j ∈ G, Gj is a value set of objective

fj , j = 1, . . . , n, and G is the set of all indices of the objectives.

This model assumes one of the two forms of the marginal value functions uj(aj):

(i) piecewise-linear,

(ii) general, non-decreasing.

In case (i), the ranges [αj , βj ] are divided into γj ≥ 1 sub-intervals [a0j , a
1
j ], [a1j , a

2
j ], ..., [a

γj−1
j , a

γj
j ], where

akj = αj + k
γj

(βj − αj), k = 0, . . . , γj , and j ∈ G, while αj and βj are the worst and the best performances

on objective fj , respectively. The marginal value of solution a ∈ A with respect to objective fj is obtained

by linear interpolation,

uj(aj) = uj(a
k
j ) +

aj − akj
ak+1
j − akj

(uj(a
k+1
j )− uj(akj )), (4)

if aj ∈ [akj , a
k+1
j ], where k ∈ {0, ..., γj − 1}.

The piecewise-linear additive model is completely defined by the marginal values at the breakpoints, i.e.,

uj(a
0
j ) = uj(αj), uj(a

1
j ), uj(a

2
j ), · · · , uj(a

γj
j ) = uj(βj). Considering this type of preference function, one has

to consider the following monotonicity and normalization constraints:

• for all j ∈ G and for all k = 0, . . . , γj − 1, uj(a
k
j ) ≤ uj(a

k+1
j );

• for all j ∈ G, uj(αj) = 0, and
∑
j∈G

uj(βj) = 1.

In case (ii), the characteristic points of marginal value functions uj , j ∈ G, are fixed in evaluation points

of considered solutions. Let τj be the permutation on the set of indices of solutions from A that reorders

them according to non-decreasing evaluation on objective j, i.e.,

aτj(1) ≤ aτj(2) ≤ . . . ≤ aτj(m−1) ≤ aτj(m), j ∈ G,m = |A|.

The general non-decreasing additive model is completely defined by the marginal values at the character-

istic points, i.e., uj(αj) = uj(aτj(1)), uj(aτj(2)), . . . , uj(aτj(m)) = uj(βj). Note that in this case, no linear
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interpolation is required to express the marginal value of any reference solution.

Considering this type of value function, the monotonicity constraints have the form uj(aτj(k)) ≤ uj(aτj(k+1)),

for all k = 1, . . . ,m− 1, while normalization constraints are the same as in case (i).

1.3.2. The Choquet Integral Preference Model

The simplest additive value function model is the weighted sum, obtained by assigning a non-negative

weight wj to each objective fj , j ∈ G, and giving to each a ∈ A the value

U(a) =

n∑
j=1

wjfj(a) = w1f1(a) + . . .+ wnfn(a). (5)

The weighted sum has some limitations in representing user’s preferences, which are shown in the following

example. Let us underline that in this example we shall speak of evaluation criteria, being in Multiple

Criteria Decision Aiding (MCDA) the equivalent of the objective functions in Multiobjective Optimization.

Example. The manager of an international company wants to rank three candidates (Smith, Johnson and

Brown), taking into account their performances on criteria experience (Ex) and age (Ag), given on a [0, 10]

scale (see Table 1).

Table 1: Experience (Ex) and age (Ag) of three candidates

Ex Ag

Smith(S) 6 10

Johnson(J) 8 8

Brown(B) 10 6

Since candidates having good experience are not necessarily young, and vice versa, if there is a good

performance on one of the two criteria, one does not expect a good performance also on the other criterion.

Consequently, a candidate being good both on experience and age is well appreciated. Therefore, in the

manager’s mind there is a positive interaction (synergy) between the performance on experience and the

performance on age. In other words, the two criteria are not preferentially independent [32]. For this reason,

the manager prefers Johnson to Smith and Brown.

If one would like to represent the preferences expressed by the manager using the weighted sum model, the

following inequalities should be satisfied:

wEx · 6 + wAg · 10 < wEx · 8 + wAg · 8,
wEx · 10 + wAg · 6 < wEx · 8 + wAg · 8,

where wEx and wAg are the weights of experience and age, respectively. It can be easily verified that the

above inequalities are contradictory since:
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wEx · (−2) + wAg · 2 < 0 < wEx · (−2) + wAg · 2.

Thus we have to conclude that, due to the positive interaction between the performances on experience and

age, the weighted sum is not able to represent the manager’s preferences.

In order to represent preferences in case of interaction between criteria, non-additive integrals are often

used [25]. The best-known non-additive integral in the literature is the Choquet integral [14]. The Choquet

integral is based on the concept of capacity (fuzzy measure) that assigns a weight to each subset of criteria

rather than to each single criterion. More precisely, denoting by 2G the power set of G (i.e., the set of all

subsets of G), the function µ : 2G → [0, 1] is called capacity on 2G if the following properties are satisfied:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ T ⊆ S ⊆ G, µ(T ) ≤ µ(S) (monotonicity condition).

Intuitively, for all T ⊆ G, µ(T ) can be interpreted as a comprehensive importance of the criteria from T

considered as a whole.

Example (continuation). To represent the importance and the interaction of the performances on

experience and age, one can set µ({Ex}) = 0.4, µ({Ag}) = 0.3 and µ({Ex,Ag}) = 1. The differ-

ence µ({Ex,Ag}) − µ({Ex}) − µ({Ag}) = 0.3 represents the positive interaction between experience

and age because it measures how much greater is the importance of experience and age considered as

a whole (µ({Ex,Ag})) comparing to the sum of their importances when they are considered separately

(µ({Ex})+µ({Ag})).

The Choquet integral involving capacity µ assigns to each alternative a ∈ A the following value:

Cµ(a) =

n∑
j=1

[
f(j)(a)− f(j−1) (a)

]
µ (Nj) , (6)

where (·) stands for a permutation of the indices of criteria, such that

f(0)(a) ≤ f(1) (a) ≤ f(2) (a) ≤ ... ≤ f(n) (a) , (7)

Nj = {(j), . . . , (n)} and f(0)(a) = 0.

Observe that (7) requires that the values taken by objective functions fj , j = 1, . . . , n, have to be non

negative. If this is not the case, one can recode the values fj(a), a ∈ A, with a translation f∗j (a) = fj(a) + c

with c ≥ − min
j∈G, b∈A

fj(b), so that we get f∗j (a) ≥ 0 for all j = 1, . . . , n and all a ∈ A.

A meaningful reformulation of the capacity µ and of the Choquet integral can be obtained by means of

the Möbius representation of the capacity µ (see [40]) which is a function m : 2G → R [42] defined as follows:
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µ(S) =
∑
T⊆S

m(T ).

Note that if S is a singleton, i.e., S = {j} with j = 1, . . . , n, then µ({j}) = m({j}). Moreover, if S is a pair

of criteria, i.e., S = {i, j}, then µ({i, j}) = m({i}) +m({j}) +m({i, j}).
The Möbius representation m(S) of capacity µ(S) can be obtained as follows:

m(S) =
∑
T⊆S

(−1)|S−T |µ(T ).

In terms of the Möbius representation, properties 1a) and 2a) are, respectively, restated as (see [13]):

1b) m(∅) = 0,
∑
T⊆G

m(T ) = 1,

2b) ∀ j ∈ G and ∀S ⊆ G \ {j} ,
∑
T⊆S

m(T ∪ {j}) ≥ 0,

while the Choquet integral may be reformulated as follows:

Cµ(a) =
∑
T⊆G

m(T ) min
j∈T

fj (a) . (8)

Geometrically, in the case of two objectives (G = {f1, f2}), the iso-value curve of the Choquet integral

can be decomposed into two linear functions, one above the line f1 = f2 and one below the line f1 = f2.

Using (8) we can write

Cµ(a) =

{
(m({1}) +m({1, 2}))f1(a) +m({2})f2(a), if f1(a) ≤ f2(a)

m({1})f1(a) + (m({2}) +m({1, 2}))f2(a), if f1(a) ≥ f2(a)

Example (continuation). The value assigned to Smith (S) by the Choquet integral with capacity µ is

the following:

Cµ(S) = fEx(S) · µ({Ex,Ag}) + (fAg(S)− fEx(S)) · µ({Ag}) = 7.2. (9)

This value can be explained as follows. The performance fEx(S) = 6 is attained by the two criteria

and thus it is multiplied by µ({Ex,Ag}) which is the weight assigned to experience and age considered

as a whole. The performance fAg(S) = 10 is attained only on criterion age and therefore the difference

fAg(S) − fEx(S) is multiplied by µ({Ag}) which is the weight assigned to age considered alone. Analo-

gously, we get Cµ(Johnson) = 8 and Cµ(Brown) = 7.6, so that we have Cµ(Johnson) > Cµ(Smith) and

Cµ(Johnson) > Cµ(Brown), and thus we can conclude that the Choquet integral is able to represent the

manager’s preferences.

12



Observe, moreover, that the Möbius representation m of the capacity µ gives m({Ex}) = 0.4, m({Ag}) =

0.3 and m({Ex,Ag}) = 0.3. Therefore, the Choquet integral referring to Smith can be reformulated as

follows in terms of the Möbius representation m:

Cµ(S) = fEx(S) ·m({Ex}) + fAg(S) ·m({Ag}) + min(fEx(S), fAg(S)) ·m({Ex,Ag}) = 7.2.

This value can be explained as follows. The performances on experience and on age are multiplied by

m({Ex}) and m({Ag}), respectively, representing the relative weights of the two criteria. However, the value

obtained by summation of the two weighted components has to be corrected by adding min(fEx(S), fAg(S)) ·
m({Ex,Ag}) representing the positive interaction between the performance on experience and the perfor-

mance on age. The Choquet integral of Johnson and Brown can be analogously reformulated in terms of

the Möbius representation.

In order to reduce the number of parameters to be elicited and to avoid an overprecise description of the

interactions among criteria, Grabisch [24] introduced the concept of fuzzy k-additive capacity. A capacity

is called k-additive if m(T ) = 0 for T ⊆ G, such that |T | > k. In particular, in case of a 1-additive capacity,

the Choquet integral is the standard weighted sum model.

In MCDA, it is easier and more straightforward to consider 2-additive capacities, since then the users

have to express preference information on positive and negative interactions between two criteria only,

neglecting possible interactions among three, four and, generally, r criteria, r = 2, . . . , n. Moreover, by

considering 2-additive capacities, the computational effort needed to determine the parameters is reduced

since only n+
(
n
2

)
coefficients have to be assessed; specifically, in terms of the Möbius representation, a value

m({i}) for every criterion i, and a value m({i, j}) for every pair of criteria {i, j}. The value that a 2-additive

capacity µ assigns to a set S ⊆ G can be expressed in terms of the Möbius representation as follows:

µ(S) =
∑
i∈S

m ({i}) +
∑
{i,j}⊆S

m ({i, j}) , ∀S ⊆ G. (10)

With regard to 2-additive capacities, properties 1b) and 2b) have, respectively, the following forms:

1c) m (∅) = 0,
∑
i∈G

m ({i}) +
∑
{i,j}⊆G

m ({i, j}) = 1,

2c)


m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑
j∈T

m ({i, j}) ≥ 0, for all i ∈ G, and for all T ⊆ G \ {i} , T 6= ∅.

In this case, the Choquet integral of a ∈ A is calculated as:

Cµ(a) =
∑
i∈G

m ({i}) fi (a) +
∑
{i,j}⊆G

m ({i, j}) min(fi (a) , fj (a)). (11)
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As one can observe, the use of the Choquet integral is based on several parameters (capacity µ(T ) for

each subset T ⊆ G or a value m(T ) for each subset T ⊆ G in case of the Möbius representation of capacity

µ). To determine these parameters, a direct and an indirect technique known from the literature can be

applied. In the direct technique, the user has to provide the parameters directly, while in the indirect

technique the user has to provide some preference information from which parameters compatible with this

information are retrieved by ordinal regression. The latter technique is much more realistic than the former

because it requires less cognitive effort from the user. The indirect technique for the Choquet integral has

been firstly proposed in [35]. When using the indirect technique, it is possible that more than one set of

parameters is compatible with the preference information given by the user. For this reason, selection of only

one of these compatible sets of parameters is somewhat arbitrary. To take into account all sets of parameters

compatible with the user’s preferences, Robust Ordinal Regression (ROR) [27] has been recently proposed.

Taking into account all the sets of parameters compatible with the preferences of the user, ROR presents a

recommendation in terms of necessary or possible preference relations which, for a pair of alternatives a and

b, hold if a is at least as good as b for all or for at least one set of compatible parameters, respectively. ROR

has been applied to the Choquet integral in [2] under the name of Non Additive Robust Ordinal Regression

(NAROR).

Observe also that, besides determination of the capacity, the use of the Choquet integral involves an-

other specific problem that is the construction of a common scale for the considered criteria permitting to

compare the performances on different criteria and to compute in a meaningful way their difference. Indeed,

looking at the definition of the Choquet integral in (6), we can observe that on one hand, permutation (·) of

the considered performances on different criteria is required, while on the other hand, the computation of

the Choquet integral requires also that the differences between the performances on criteria g(i) and g(i−1),

i = 1, . . . , n, are meaningful. In the provided example this is obvious because, for instance, considering

candidate Smith, the performace of 10 on age is clearly more valuable than the performance of 6 on expe-

rience, and their difference is 4. But, considering the case of a decision about cars, which is more valuable

between a maximum speed of 200 km/h and a price of 35,000 euros? This means that in case of criteria with

heterogeneous scales, the performances on all criteria have to be mapped to a common scale which permits

to compare them and also to compute their difference. Very often a normalization of performances on each

criterion is done considering an “unacceptable” and an “optimal value” for each criterion and considering

a linear interpolation between these two extremes (see, e.g., [26]). A more sophisticated methodology per-

mitting to construct a common scale and a capacity for the Choquet integral on the basis of preference

information supplied by the DM has been proposed in [1] and further developed in [3]. In this paper, as we

shall explain in detail in Section 1.4, we consider an intermediate approach consisting in first normalizing

the performances on each criterion, and then rescaling them through multiplication by a set of weights that

ensure comparability between performances on different criteria. We explain this procedure in the continu-

ation of the previous example, in which the performances on considered criteria are already normalized but

they need to be rescaled so that the preferences of the DM can be represented by the Choquet integral.
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Example (continuation). Suppose that two new candidates have to be added to the three previously

considered. Their performances with respect to experience and age are presented in table 2.

Table 2: Two new candidates evaluated on experience and age

Ex Ag

Baker 7 9

Miller 9 7

After reflecting a little, the manager arrived at the conclusion that he has the following preferences with

respect to the five candidates:

Baker � Johnson �Miller � Brown � Smith.

When trying to apply the Choquet integral to represent the current manager’s preferences, we realize that

it is not possible. Indeed, by computing the Choquet integral of the performances of the candidates Brown

and Smith we get

6 · µ({Ex,Ag}) + (10− 6) · µ({Ex}) > 6 · µ({Ex,Ag}) + (10− 6) · µ({Ag}) (12)

while comparing Baker and Miller we get

7 · µ({Ex,Ag}) + (9− 7) · µ({Ag}) > 7 · µ({Ex,Ag}) + (9− 7) · µ({Ex}). (13)

From Eq. (12) we get µ({Ex}) > µ({Ag}) while from Eq. (13) we get µ({Ag}) > µ({Ex}), which are of

course incompatible.

Observe, however, that if you rescale the criteria experience and age multiplying the relative performances

of the candidates by 0.56 and 0.44, respectively, we get the performances shown in Table 3. Computing

the Choquet integral of the five candidates considering the capacity previously defined (µ({Ex}) = 0.4,

µ({Ag}) = 0.3 and µ({Ex,Ag}) = 1), we get the values in the last column of Table 3 which represent the

preferences of the manager. �

Table 3: The five candidates evaluated on experience and age after rescaling

Ex Ag CI

Smith 3.36 4.4 3.67

Johnson 4.48 3.52 3.90

Brown 5.6 2.64 3.82

Baker 3.92 3.96 3.93

Miller 5.04 3.08 3.86

Let us conclude this section discussing the use of Choquet integral in case the DM prefers smaller

objectives function values, i.e. for all a, b ∈ A, if fj(a) ≤ fj(b), then a is at least as good as b with respect
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Figure 1: In this case, Q ≡ (2, 1) is preferred to P ≡ (1, 2) and R ≡ (2.5, 3) is preferred to S ≡ (4, 1). Trying to translate
these preferences by using a linear model (5), we get the contradictory inequalities w1 < w2 and w1 > 4

3
w2. By using the

Choquet integral preference model (8) to translate these preferences, we get the inequalities m({1}) < m({2}) and m({1}) >
4
3
m({2})+m({1, 2}) being not in contradiction. For example, by considering m({1}) = 0.7, m({2}) = 0.8 and m({1, 2}) = −0.5

these inequalities are satisfied.

to objective fj . In this case, the objective functions fj can still be aggregated using the Choquet integral,

but then solutions with a smaller Choquet integral would be preferred, i.e., for all a, b ∈ A if Cµ(a) ≤ Cµ(b),

then a is comprehensively at least as good as b. In this case, the aim is to minimize rather than to maximize

the value of the Choquet integral.

1.4. The NEMO-II-Ch method

Because most benchmark problems in evolutionary multiobjective optimization are minimization prob-

lems, in the following description of NEMO-II and of the empirical analysis, we assume that objective

functions as well as a supposed users’ utility are to be minimized. Compared to the discussion above, the

only difference is that while with maximization, the preference of an alternative a over an alternative b

was translated into the constraint U(a) ≥ U(b) + ε, now the preference is translated into the constraint

U(a) + ε ≤ U(b). In case of indifference between a and b, the corresponding constraint is U(a) = U(b).

Let us first consider a problem with two objectives f1 and f2 to be minimized. As observed in Section

1.3.2, due to some interactions between the considered criteria it could happen (as in the case shown in

Figure 1), that the linear model is not able to represent the preferences of the DM. For this reason, we

suggest using the Choquet integral preference model that is able to take into account interactions between

criteria. In [38], it has been shown experimentally that the Choquet integral has a greater capacity of

representing the preferences of a DM than the weighted sum model.

While a greater flexibility of the preference model allows to capture more complicated user preference

information and is thus desirable, usually, it also has more parameters, and more preference information is

required before the set of compatible value functions is curbed sufficiently to be useful in narrowing down

the search. For this reason, we propose to keep the complexity of the preference model low as long as it is
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Algorithm 2 Basic NEMO-II-Ch method

Current preference model = LINEAR.
Generate initial population of solutions.
Elicit user’s preferences by asking DM to compare two randomly selected non-dominated solutions.
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at least one
compatible value function. Rank within each front using crowding distance.
repeat

Select individuals for mating.
Generate offspring using crossover and mutation and add them to the population.
if Time to ask the DM then

Elicit user’s preferences by asking DM to compare two solutions that are the most preferred for at
least one compatible value function.
if There is no value function remaining compatible with the user’s preferences then

if Current preference model = LINEAR then
Preference model = CHOQUET.

else
Remove information on pairwise comparisons, starting from the oldest one, until feasibility is
restored and reintroduce them in the reverse order as long as feasibility is maintained.

end if
end if

end if
Rank individuals into fronts by iteratively identifying all solutions that are most preferred for at least
one compatible value function. Rank within each front using crowding distance.
Reduce population size back to initial size by removing worst individuals.

until Stopping criterion met.
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sufficient to capture all preference information, but switch to a more complex preference model when this is

no longer the case, following the procedure described in Algorithm 2. In particular, we start with assuming

a linear preference model. Once we can no longer find a linear value function compatible with all elicited

preference relations, we switch to a 2-additive Choquet integral.

To check whether there exists a set of weights w = (w1, . . . , wn) such that the linear model is able to restore

the preferences of the DM, one has to solve the following LP,

max ε, subject to

U(a)− U(b) + ε ≤ 0 for all a �p b,
n∑
j=1

wj = 1

wj ≥ 0, for all j = 1, . . . , n


ElinearDM

where U(a) − U(b) ≤ ε are the constraints translating the preferences of the DM while the other two

constraints are used to ensure that weights are non-negative and normalized.

There is a w compatible with the preferences of the DM if and only if ElinearDM is feasible and εlinear > 0

where εlinear = max ε subject to ElinearDM . In this case, one can proceed to order the population by using the

same procedure described in the previous section, checking, for each solution x, whether there exists a set

of weights w = (w1, . . . , wn) such that x is the best among the considered solutions. To this end, one has

to solve the following LP.

max ε, subject to

U(a)− U(b) + ε ≤ 0 for all a �p b,

U(x)− U(y) + ε ≤ 0 for all y ∈ A \ {x} ,
n∑
j=1

wj = 1

wj ≥ 0, for all j = 1, . . . , n


Elinearx

where constraints U(x)− U(y) ≤ ε ensure that x is preferred to all other solutions in A.

If Elinearx is feasible and εlinearx > 0 where εlinearx = max ε subject to Elinearx , then there exists a set of

weights w such that x is the preferred solution and therefore it is included in the first front. After ordering

all the solutions into different fronts, the solutions in the same front are ordered by computing the classical

crowding distance of NSGA-II.

If there exists no vector w such that the linear model would be able to restore the preference information

provided by the DM, we need to use a more complex model such as the Choquet integral in order to represent

the preferences expressed by the DM. As we shall justify later, we use the 2-additive Choquet integral here

that has a parameter m({j}) for each objective j and a parameter m({i, j}) for each pair of objectives {i, j}.
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Figure 2: Example for a case where for capturing a user’s preferences with the Choquet integral it is necessary to move the line
f2 = f1 by multiplying both objectives by weights w1 and w2 such that w1 + w2 = 1.

As already discussed in Section 1.3.2, the use of the Choquet integral assumes that all objectives are

expressed on the same scale. Indeed, when using the original formulation of the Choquet integral involving

the capacity µ (see Eq. (6)), for each solution x we need to order all values of each individual’s objective

from the worst to the best. Analogously, using the Choquet integral expressed by means of the Möbius

decomposition m (see Eq. (8)), for each solution x and for each subset of objective functions, we need to

know the minimum value. Since we cannot assume that the scales of the different objectives are comparable,

the scaling becomes part of the model. In other words, in addition to the usual parameters of the Choquet

integral, we also need to consider a scaling weight for each objective.

Let us consider the example shown in Figure 2. If the user states that Q ≡ (1.75, 0.4) is preferred to P ≡
(1.25, 1.05) and R ≡ (2.75, 1.9) is preferred to S ≡ (3.75, 0.4), there is no Choquet integral compatible with

these preferences. The preferences correspond to the inequalities 0.5m({1})−0.65m({2})−0.65m({1, 2}) < 0

and m({1})− 1.5m({2})− 1.5m({1, 2}) > 0 which contradict the monotonicity constraints 2c). This is also

apparent from the fact that all four alternatives are located under the line f1 = f2, where the iso-utility

function of the Choquet integral is linear, and no linear model is able to reflect the preferences.

However, if we scale the objectives appropriately (which ”moves” the f1 = f2 line), then it is possible

to represent the preference information using a Choquet integral. For example, let us multiply the two

objectives by the weights w1 = 0.31 and w2 = 0.69. The four points become Q ≡ (0.5425, 0.276), P ≡
(0.3875, 0.7245), R ≡ (0.8525, 1.311) and S ≡ (1.1625, 0.276) while the constraints translating the preferences

of the user become 0.155m({1}) − 0.4485m({2}) − 0.1115m({1, 2}) < 0 and 0.31m({1}) − 1.035m({2}) −
0.5765m({1, 2}) > 0, being compatible with the Möbius decomposition m({1}) = 0.9, m({2}) = 0.4 and

m({1, 2}) = −0.3.

Mathematically, determining whether the preferences can be represented by an appropriate scaling and

Choquet integral translates into the following non-linear program:
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max ε, subject to

Cµ(w1f1(a), . . . , wnfn(a))

−Cµ(w1f1(b), . . . , wnfn(b)) ≤ ε for all a �p b,
n∑
j=1

wj = 1

m (∅) = 0,∑n
j=1m ({j}) +

∑
{i,j}⊆{1,...,n}m ({i, j}) = 1,

m ({j}) ≥ 0, for all j = 1, . . . , n,

m ({j}) +
∑
i∈T

m ({i, j}) ≥ 0, for all j = 1, . . . , n, and

for all T ⊆ {1, . . . , n} \ {j} , T 6= ∅.



EChDM

(14)

The user’s preferences can be represented if an only if the solution to this optimization problem results

in εChDM > 0, where εChDM = max ε subject to EChDM .

Since the optimization problem is non-linear, to solve it, we use the Nelder-Mead algorithm [36] to

search the space of weights while maximizing ε, with an LP being solved in every iteration to determine

the best Möbius parameters for the weights in the current iteration. The algorithm is aborted as soon

as an ε > 0 has been found. If after a few iterations (we chose 40 in the experiments below), no such

weight/Choquet coefficient combination has been found, we stop the search and remove some of the DM’s

preference information, starting from the oldest, until the feasibility is regained.

Once it has been found that the preference information provided by the DM can be represented by using

the Choquet integral preference model (possibly after removing some pieces of information), the solutions

are put into different fronts by using the same procedure as described previously. For each solution x ∈ A,

one has to check whether this solution might be the most preferred one by solving the following optimization

problem.

max ε, subject to

Cµ(w1f1(x), . . . , wnfn(x))

−Cµ(w1f1(y), . . . , wnfn(y)) ≤ ε, for all y ∈ A \ {x} ,

EChDM

EChx

(15)

Because, again, the optimization problem (15) is non-linear, in a first step we try to simplify the solution

by fixing the vector of weights w′ = (w′1, . . . , w
′
n) such that w′1f1(x) = . . . = w′nfn(x) and then checking,

by using linear programming optimization, if there exists a set of Choquet coefficients such that εChx > 0,

where εChx = max ε s.t. EChx (indeed, if we fix the weights (w1, . . . , wn), then the optimization problem (15)

becomes an LP problem). We found that in many cases, this will find a feasible solution if there exists one.

If not, then we use the Nelder-Mead method explained above to check whether the optimization problem
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allows for εChx > 0.

Note that for more than 2 dimensions, we still restrict our model to 2-additive Choquet.

1.5. Experimental Results

In this section, the algorithms introduced before are compared empirically. We start with a comparison

of NEMO-I and NEMO-II to justify our use of NEMO-II for the remainder of the paper. Next, we look

at the effect of model complexity, and demonstrate the benefit of starting with a simple model but then

switching to a more complex model if it is necessary to represent the user’s preferences. Finally, we compare

a number of algorithms on various 2 to 5-dimensional benchmark functions.

For the algorithms tested, we use the following notation:

• NEMO-I-L: The NEMO-I algorithm with a linear additive preference model.

• NEMO-II-L: The NEMO-II algorithm with a linear additive preference model.

• NEMO-II-PL2: The NEMO-II algorithm with a piecewise linear additive preference model, consist-

ing of two linear pieces. The breakpoint was chosen to be the median of the values in the population

for each objective.

• NEMO-II-G: The NEMO-II algorithm with a general monotonic additive preference model as often

used in ROR [27].

• NEMO-II-Ch: The proposed NEMO-II algorithm that starts with a simple linear preference model

and switches to a 2-additive Choquet preference model when the linear model is no longer able to

account for the user’s preference information.

Furthermore, the following are provided as benchmarks:

• NSGA-II: The standard NSGA-II algorithm not using preference information.

• EA-UVF: A single-objective EA that uses the true user’s value function for ranking individuals

(information that is not available to the other algorithms). EA-UVF shows the performance that

could be expected if the user’s value function was fully known to the evolutionary algorithm from the

beginning. Clearly, this is an idealized setting and only serves as a reference.

• Optimum: This is the best value of feasible solutions according to the true user’s value function.

Let us point out that comparison between different interactive methods is difficult since they use different

preference information. Consequently, we decided to compare our method with NSGA-II only because

NEMO-II-Ch is based on NSGA-II.

All algorithms use a real valued representation, generate offspring by simulated binary crossover with

crossover probability of 0.9 and ηc = 15, and Gaussian mutation with mutation probability 1
v (where v is the
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number of variables and depends on the considered problem) and step size σ = 0.1. Mating selection is done

by tournament selection. We run the algorithm for a pre-specified number of 400 (in case of 2 objectives) or

600 (in case of 3 or 5 objectives) generations. The population size has been set to 30, a value smaller than

usual in MOEAs, but we do not aim to find the whole Pareto frontier but only the most preferred solutions.

The DM is asked to provide some preference information about one pair of randomly picked non-dominated

solutions every 10 generations.

The “true” user’s value function assumed in this study is the Chebyshev function, i.e., the user’s goal

is to maximize UDM (a) = −max{w1f1(a), . . . , wnfn(a)}, which is equivalent to minimizing U−DM (a) =

max{w1f1(a), . . . , wnfn(a)}. The parameters w1, . . . , wn depend on the problem and are defined below. For

the sake of simplicity, with a slight abuse of the terminology, when we speak of the user’s value functions we

refer to their opposite forms, and thus we aim at minimizing the Chebyshev-like value function U−DM (a) =

max{w1f1(a), . . . , wnfn(a)}. When showing the plots of convergence and tables, the terms “Convergence

indicator” and “Convergence curve” mean the value of U−DM (·).
We measure performance based on the user’s true utility of the best individual in the population, i.e., the

minimum of U(x) over all individuals in the population. This assumes that the final population is returned

to the DM, and the DM is able and willing to spend the effort to identify the most preferred solution among

the set. All results shown in all tables and figures have been averaged over 50 independent runs.

1.5.1. Comparison of NEMO-I and NEMO-II

Since we implement here for the first time an idea that has been proposed in [11] as NEMO-II, we

would like to assert that it is not only much more efficient than NEMO-I, but also competitive in terms

of solution quality. To do this, we have compared NEMO-I and NEMO-II with a simple linear preference

model on the simple convex 2-dimensional test problem ZDT1. The user’s true value function was set to

U(x) = f1(x) + f2(x), i.e., the linear model is sufficient to represent the user’s preferences. Knowing the

user’s true value function, one can calculate the solution with the best true user value for a given problem.

This best value will be called “optimum”. Figure 3 shows the convergence curve corresponding to this

experiment. One can observe that both methods converge to the optimum (f1(x) = 1
4 and f2(x) = 1

2 , with

U(x) = 3
4), and that the convergence of NEMO-II-L is slightly quicker than that of NEMO-I-L. We thus

conclude that NEMO-II is not only computationally much more efficient than NEMO-I, but at least as good,

and we will focus on NEMO-II in the remainder of this paper.

1.5.2. Model complexity switching

Determining an appropriate model complexity is a challenging issue. Obviously, a higher complexity of

the algorithm’s preference model allows the algorithm to model more complex user’s preferences. On the

other hand, higher model complexity usually means more parameters to be set, and thus more preference

information is required for the model to become sufficiently restricted to be useful in guiding the evolutionary

process. Besides, more parameters also means a higher computational cost for solving each LP in NEMO-II.

For these reasons, we have proposed in Section 1.4 NEMO-II-Ch that starts with a simple linear preference
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Figure 3: ZDT1-2D Linear (f1(x) + f2(x))

model, and switches to a 2-additive Choquet integral when the simple linear model is no longer able to

account for the user’s preference information.

Figure 4 compares the proposed NEMO-II-Ch with NEMO-II-L, with NEMO-II that uses the 2-additive

Choquet integral from the beginning, and with NEMO-II that starts using the linear model, but then

switches to the full Choquet model rather than the 2-additive one. The test problem is the 5-dimensional

DTLZ1, and the user preference function to be minimized is the Chebyshev function:

U(x) = max {0.1f1(x), 0.15f2(x), 0.2f3(x), 0.25f4(x), 0.3f5(x)} . (16)
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Figure 4: DTLZ1-5D Chebyshev with different types of Choquet integral as preference model.

As can be observed, the algorithm variants starting with a linear preference model converge much more

quickly. This makes intuitive sense, as they have fewer parameters to estimate and thus can narrow down

the search more quickly. Around iteration 70, the convergence curves for NEMO-II-L, NEMO-II-Ch and

“NEMO-II-L then Choquet all variables” diverge, i.e., the linear model is sometimes no longer sufficient to

capture the user’s preference information, and switching to the Choquet model is required (note that not all
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runs switch at the same time). The difference between switching to the full Choquet integral or 2-additive

Choquet integral is relatively small, but the full Choquet integral is somewhat slower, probably because it

increases the number of parameters which slows down convergence. There doesn’t seem to be a difference

in final solution quality. Sticking to the linear model eventually results in poor and unstable behavior, as

the model can no longer capture the user’s preferences and old preference information has to be discarded.

In the following, we will thus stick to NEMO-II-Ch as our most promising procedure. To demonstrate

the advantage of learning user’s preferences, we compare it on various benchmark problems with NSGA-II.

To further demonstrate the particular advantages of the Choquet integral over alternative value function

models, we also report on results obtained with NEMO-II-L, NEMO-II-PL2, and NEMO-II-G.

Results in 2D

As 2D test problems, we use ZDT1 (with a convex Pareto front) and ZDT2 (with concave Pareto front) and

the parameters of the Chebyshev function given in Table 4.

Table 4: Parameters of the user’s value function in 2D

w1 w2

ZDT1-middle 0.6 0.4
ZDT1-extreme 0.15 0.85
ZDT2-middle 0.6 0.4
ZDT2-extreme 0.15 0.85

As one can observe in Figures 5 and 6, the differences of final solution quality of the various approaches

are very small, and all get very close to the optimal solution. This is not very surprising, since although the

linear model can not represent the Chebyshev user preference directly, given that ZDT1 has a convex Pareto

front, even the linear model is able to converge to any solution on the frontier. The fact that NEMO-II-Ch

and NEMO-II-L lines overlap almost completely indicates that a linear model was almost always able to

respect the user’s preferences. Where the user prefers an extreme solution, the convergence of NSGA-II and

NEMO-II-G is somewhat slower.

Moving to ZDT2, the situation is slightly different. NEMO-II-L is no longer able to converge to the

correct point because of the concavity of the Pareto front of the test function as can be noticed from the

erratic behavior of the corresponding curve in Figure 7 and especially in Figure 8. NSGA-II and NEMO-II-G

again converge more slowly in the case of the user preferring an extreme solution.

For both two-dimensional test problems and both user’s preference functions, the convergence curves for

NSGA-II and NEMO-II-G are very similar, indicating that NEMO-II-G was not able to use the provided

preference information to substantially enrich the standard non-dominated sorting procedure.

Rather than comparing the value obtained after a specific number of generations, Table 5 shows the
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Table 5: Area under the curve for 2-dimensional problems, mean ± std. err. The difference of all results to the results of
NEMO-II-Ch is significant except for NEMO-II-L in ZDT1.

ZDT1
middle extreme

NSGA-II 141.38 ± 1.88 200.03 ± 4.12
NEMO-II-L 127.32 ± 1.76 164.48 ± 4.09

NEMO-II-PL2 138.27 ± 1.51 180.14 ± 3.04
NEMO-II-G 139.38 ± 0.94 196.22 ± 2.57
NEMO-II-Ch 126.73 ± 1.62 163.73 ± 4.11

ZDT2
middle extreme

NSGA-II 199.96 ± 2.02 255.08 ± 4.67
NEMO-II-L 207.80 ± 1.95 275.34 ± 5.24

NEMO-II-PL2 205.17 ± 1.40 254.36 ± 3.79
NEMO-II-G 199.99 ± 1.08 252.38 ± 2.48
NEMO-II-Ch 189.55 ± 1.61 225.27 ± 4.56
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Figure 9: Convergence to the best preferred solution by NEMO-
II-Ch for ZDT2-middle
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Figure 10: Attainment surfaces by NEMO-II-Ch for ZDT2-
middle

area under the convergence curve over all 400 generations as a measure of the overall performance of the

algorithm. Based on a Mann-Whitney-U test with 5% significance level, the differences between NEMO-II-

Ch and each of the other tested algorithms are significant, except for ZDT1 and the difference to NEMO-II-L.

The latter is not surprising, given that for such a convex problem a linear model is able to find any solution

on the frontier.

To illustrate the convergence of NEMO-II-Ch in the objective space, we show in Figure 9 the population

of solutions of ZDT2-middle after 30, 50, 100 and 200 generations. One can observe that after 30 generations

the population of solutions is located in the upper left corner of the Pareto front which corresponds to one

of the two minima obtained by a linear value function model. Then, in subsequent generations the method

discovers that the linear model is not able to represent the growing set of pairwise comparisons and switches

to the Choquet integral model. From generation 50 on, the method generates solutions grouped around the

point most preferred by the artificial user. In generations 100 and then 200, the population is almost exactly
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focused on this point.

It is also interesting to observe the convergence process using the attainment surface plots [33] for the same

problem. They are shown in Figure 10. The median attainment surface shows the area that is dominated

by solutions from the population of a given generation in 50% of the runs. In Figure 10 the dominated

area is located on the upper right side of the curves. The obtained surface after 30 generations has almost

conic shape because the population of solutions is concentrated in the left upper corner of the Pareto front.

After switching from the linear to the Choquet integral model the attainment surfaces become more and

more conic and, finally, in generation 200 it is perfectly orthogonal. This means that the whole population

is focused on one, most preferred point.

Results in 3D

In three dimensions we have compared the five methods on the benchmark problems DTLZ1 and DTLZ2

considering the user’s Chebyshev value function with the parameters given in Table 6.

Table 6: Parameters of the user’s value function in 3D

w1 w2 w3

DTLZ1-3D-middle 0.3 0.4 0.3
DTLZ1-3D-extreme 0.2 0.3 0.5
DTLZ2-3D-middle 0.3 0.4 0.3
DTLZ2-3D-extreme 0.2 0.3 0.5

What we can observe for DTLZ1 in Figures 11 and 12 is that only NEMO-II-Ch is able to get very

close to the optimal solution. Indeed, after generation 200 the curve of NEMO-II-Ch merges with that

of EA-UVF, which means the NEMO-II-Ch behaves like a single-objective EA using the true user’s value

function. NSGA-II is the second closest, but converges significantly slower. NEMO-II-L and NEMO-II-PL2

show erratic behavior, and NEMO-II-G converges very slowly, apparently unable to make use of the provided

preference information. Note that the peaks in the plots of NEMO-II-L and NEMO-II-PL2 appear when in

order to get a compatible model some of the oldest preference information has to be removed. This removal

deteriorates temporarily the value of the best solution in the current population.

From Figures 13 and 14, one can notice that on DTLZ2, NEMO-II-Ch is slower than NSGA-II or even

NEMO-II-G in the beginning, although it takes over eventually and finds better solutions. We are not sure

what characteristics of DTLZ2 cause this behavior. Something seems to mislead the linear model in the

wrong direction, which is doing really poorly overall. However, NEMO-II-Ch is able to recover from a bad

start when switching to the Choquet integral, and eventually yields the best results.

As the numerical results in Table 7 confirm, overall, NEMO-II-Ch is still best in three out of the four

scenarios.
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Figure 11: DTLZ1-3D-middle

3.5

35

C
o

n
v
e

rg
e

n
ce

 i
n

d
ic

a
to

r

NSGA2

NEMO-II-L

NEMO-II-PL2

NEMO-II-G

NEMO-II-Ch

EA-UVF

Optimum

0.35C
o

n
v
e

rg
e

n
ce

 i
n

d
ic

a
to

r

Optimum

0.035

0 50 100 150 200 250 300 350 400 450 500 550 600

Generations

Figure 12: DTLZ1-3D-extreme
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Figure 13: DTLZ2-3D-middle
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Figure 14: DTLZ2-3D-extreme

Table 7: Area under the curve for 3-dimensional problems, mean ± std. err. The following differences to NEMO-II-CH are
not significant based on a Mann-Whitney-U test with 5% significance level: DTLZ2 extreme and NSGA-II, DTLZ2 middle and
NEMO-II-G.

DTLZ1
middle extreme

NSGA-II 334.78± 9.64 291.60 ± 7.93
NEMO-II-L 391.65± 41.33 326.68 ± 27.10

NEMO-II-PL2 446.30±12.74 361.94 ± 9.14
NEMO-II-G 562.98 ± 13.34 439.64 ± 10.40
NEMO-II-Ch 288.17 ± 11.89 244.99 ± 8.99

DTLZ2
middle extreme

NSGA-II 128.98 ± 0.09 107.01 ± 0.10
NEMO-II-L 182.87 ± 2.01 144.03 ± 6.04

NEMO-II-PL2 148.71 ± 0.64 124.69 ± 0.78
NEMO-II-G 131.58 ± 0.07 111.24 ± 0.08
NEMO-II-Ch 137.96 ± 2.31 106.90 ± 1.33
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Figure 15: DTLZ1-5D-extreme1
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Figure 16: DTLZ1-5D-extreme2
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Figure 17: DTLZ2-5D-extreme1
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Figure 18: DTLZ2-5D-extreme2

Results in 5D

In 5D we have considered the DTLZ1 and DTLZ2 benchmark functions for two user’s Chebyshev value

functions with parameters given in Table 8.

Table 8: Parameters of the user’s value function in 5D

w1 w2 w3 w4 w5

DTLZ1-5D-extreme1 0.1 0.15 0.2 0.25 0.3
DTLZ1-5D-extreme2 0.3 0.25 0.2 0.15 0.1
DTLZ2-5D-extreme1 0.1 0.15 0.2 0.25 0.3
DTLZ2-5D-extreme2 0.3 0.25 0.2 0.15 0.1

Different from the 2D and 3D cases, in which the performance of NSGA-II was good, in the 5D case,

NSGA-II performs quite poorly. This is not very surprising, as it is known that the non-dominance ranking

does not work effectively in more than 3 dimensions. In such cases, preference information is hugely beneficial

as it allows to substantially enrich the non-dominated ranking. Figures 15-18 thus show that NEMO-II-Ch
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Table 9: Area under the curve for 5-dimensional problems, mean ± std. err. NEMO-II-Ch is significantly better than each
other algorithm except for the comparison with NEMO-II-L on DTLZ1.

DTLZ1
extreme1 extreme2

NSGA-II 1747.43 ± 70.29 1271.34 ± 50.33
NEMO-II-L 251.67 ± 19.80 250.81 ± 18.19

NEMO-II-PL2 586.27 ± 22.49 299.10 ± 21.89
NEMO-II-G 8569.95 ± 40.16 7531.91 ± 38.14
NEMO-II-Ch 207.84 ± 9.75 208.96 ± 9.25

DTLZ2
extreme1 extreme2

NSGA-II 81.86 ± 1.34 74.20 ± 1.03
NEMO-II-L 73.47 ± 2.50 70.45 ± 1.95

NEMO-II-PL2 74.97 ± 0.51 63.59 ± 0.54
NEMO-II-G 129.65 ± 0.67 119.30 ± 0.71
NEMO-II-Ch 57.02 ± 0.65 58.06 ± 0.74

obtains much better results than any of the other algorithms on both benchmark problems and for both user

preference functions. The two linear models NEMO-II-L and NEMO-II-PL2 again show an erratic behavior,

presumably because they are not sufficiently complex to reflect the user’s preference information. A bit

surprising is the very poor behavior of NEMO-II-G. Apparently, in 5D, the general monotonic additive

preference model is not helpful. Again, when looking at the numerical results in Table 9, we see that

NEMO-II-Ch yields better results than all other algorithms in all cases.

1.5.3. Average utility

Finally, Table 10 looks at the average utility of all the individuals in the final population. This measure

provides some information on how well the algorithm was able to focus the search onto the most preferred

region of the search space, as keeping some individuals with poor utility in the population would hurt this

performance measure.

Again, NEMO-II-Ch performs best for most scenarios. It is marginally worse than NEMO-II-L and

NEMO-II-PL2 for ZDT1-middle where a linear value function model is sufficient to capture the user’s

preferences. And it is slightly worse than NEMO-II-PL2 on the 5-dimensional DTLZ2-extreme2 problem,

despite the fact that according to Figure 18, the best solution in the population of NEMO-II-PL2 is clearly

worse than the best solution in the population of NEMO-II-Ch. The likely explanation is that although

NEMO-II-PL2 converged to an inferior solution, it converged fully, whereas NEMO-II-Ch still had some

diversity in the population that degraded the average utility.

1.6. Conclusions

In this paper, we presented the NEMO-II-Ch method. NEMO-II-Ch is an interactive evolutionary

multiobjective procedure guided by user’s preferences towards the most preferred part of the Pareto-optimal

set. The novelties brought by the method consist in the following features:

• It is the first implementation and empirical evaluation of the NEMO-II idea.
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Table 10: Average and stdv of the utilities for the individuals in the last population for all considered methods

ZDT1-middle ZDT1-extreme ZDT2-middle ZDT2-extreme

NSGA-II 0.3415± 0.117 0.3756± 0.2233 0.4247± 0.0868 0.5079± 0.2487
NEMO-II-L 0.1825± 0.0082 0.1182± 0.0643 0.4077± 0.1033 0.4304± 0.3214

NEMO-II-PL2 0.1853± 0.0155 0.1192± 0.0138 0.3364± 0.0374 0.3581± 0.1952
NEMO-II-G 0.3458± 0.0136 0.3740± 0.0299 0.4301± 0.0278 0.5298± 0.0519
NEMO-II-Ch 0.1856± 0.0262 0.1169± 0.0071 0.3010± 0.0106 0.1418± 0.0406

DTLZ1-3D-middle DTLZ1-3D-extreme DTLZ2-3D-middle DTLZ2-3D-extreme

NSGA-II 0.1252± 0.0373 0.129± 0.0545 0.2886± 0.049 0.3131± 0.1041
NEMO-II-L 3.5691± 16.8329 2.7865± 12.9957 0.3162± 0.0411 0.2812± 0.1038

NEMO-II-PL2 0.1237± 0.0521 0.1211± 0.0313 0.2454± 0.0404 0.2260± 0.0450
NEMO-II-G 0.1411± 0.0284 0.1384± 0.0098 0.3054± 0.0085 0.3324± 0.0113
NEMO-II-Ch 0.0635± 0.0197 0.0541± 0.0102 0.2078± 0.0395 0.1705± 0.0269

DTLZ1-5D-extreme1 DTLZ1-5D-extreme2 DTLZ2-5D-extreme1 DTLZ2-5D-extreme2
NSGA-II 1.4225± 1.0363 1.9122± 1.7195 0.2168± 0.0864 0.1977± 0.0812

NEMO-II-L 3.0879± 13.0158 2.2674± 10.7805 0.1622± 0.0657 0.1381± 0.0465
NEMO-II-PL2 0.1922± 0.1720 0.1623± 0.3116 0.1491± 0.0468 0.1214± 0.0374
NEMO-II-G 16.754± 4.772 17.494± 4.815 0.3806± 0.0620 0.3517± 0.0509
NEMO-II-Ch 0.0368± 0.0209 0.0417± 0.0205 0.1449± 0.0666 0.1353± 0.0687

• It does not work by considering only one model to translate the preferences of the DM but it starts

from the simplest one (the linear model) and passes to a more complex one (the 2-additive Choquet

integral model) when it is not possible to represent the DM’s preferences using the linear model.

• The use of the Choquet integral preference model has never been considered in the evolutionary

multiobjective optimization field for its relative complexity, however, we have demonstrated that it

is able to deal efficiently with problems where preferences involve interactions among criteria, which

additive preference models are unable to represent.

In order to demonstrate the effectiveness of the presented method, as well as the quality of its solutions,

we have compared NEMO-II-Ch with NSGA-II and a variant of Greenwood’s method (NEMO-II-L) on a

variety of benchmark problems in 2D, 3D and 5D.

In almost all performed simulations, NEMO-II-Ch clearly obtained better results than the other tested

methods.

Further developments will include to study how the increase of the number of interacting objectives in

the k-additive Choquet integral for k > 2 influences the performance of the interactive procedure based on

this preference model.
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