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Abstract We apply the Robust Ordinal Regression (ROR) approach to deci-
sion under risk and uncertainty. ROR is a methodology proposed within Mul-
tiple Criteria Decision Aiding (MCDA) with the aim of taking into account
the whole set of instances of a given preference model, for example instances
of a value function, which are compatible with preference information supplied
by the Decision Maker (DM) in terms of some holistic preference comparisons
of alternatives. ROR results in two preference relations, necessary and possi-
ble; the necessary weak preference relation holds if an alternative is at least
as good as another one for all instances compatible with the DM’s preference
information, while the possible weak preference relation holds if an alterna-
tive is at least as good as another one for at least one compatible instance.
To apply ROR to decision under risk and uncertainty we have to reformulate
such a problem in terms of MCDA. This is obtained by considering as criteria
a set of quantiles of the outcome distribution, which are meaningful for the
DM. We illustrate our approach in a didactic example based on the celebrated
newsvendor problem.
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1 Introduction

Multiple Criteria Decision Aiding (MCDA) concerns decision problems where
an alternative a, belonging to a finite set of alternatives A = {a, b, c, . . .}, is
evaluated by a consistent [58] family of criteria G = {g1, . . . , gj , . . . , gm} (see
[20] for a collection of state of the art surveys on MCDA). There are several
types of MCDA problems, the most important of which are:

• choice problems, where the aim is to select one or more alternatives from
A considered the best,

• ranking problems, where the aim is to order, partially or totally, all alter-
natives from the best to the worst,

• sorting problems, where the aim is to assign all alternatives to one or more
contiguous, preferentially ordered categories.

In this paper, we want to use MCDA to deal with decision under risk and
uncertainty. Let us remember that a distinction between risk and uncertainty
has been advocated by Knight [45] who writes that “The essential fact is
that ’risk’ means in some cases a quantity susceptible of measurement”. Thus,
this distinction is based on the possibility to measure the credibility of future
events by means of some probability (for a critical discussion on this topic
see [47]). In general, in decision under risk and uncertainty, acts from a set
F are described in terms of the consequences in a set X corresponding to a
set S of exhaustive and mutually exclusive states of the world. Each subset
E ⊆ S of states of the world is called event. More precisely, each act f ∈ F ,
is a function f : S → X that assigns to each state of the world s ∈ S the
consequence f(s) ∈ X obtained if f is selected and s is verified. For the sake
of simplicity, let us consider a finite set S. In this context, a probability is a
function p : 2S → [0, 1] such that

i) p(∅) = 0 and p(S) = 1,
ii) for all E,E′ ⊆ S such that E ∩ E′ = ∅, p(E ∪ E′) = p(E) + p(E′).

For each event E ⊆ S, p(E) represents its credibility. One can distinguish
between objective probability, exogenously given, and subjective probability,
that represents the credibility that a given Decision Maker (DM) assigns to
each event E ⊆ S as revealed by her preferences. In this case, for all E,E′ ⊆ S,
p(E) is greater than p(E′) if and only if for all x, y ∈ X, whenever the DM
prefers x to y, then she also prefers the act xEy (giving outcome x if E is
verified and y otherwise), to the act xE′y (giving outcome x if E′ is verified
and y otherwise). In fact, in the following we shall consider also non additive
probabilities, i.e. probabilities for which above property ii) is replaced by the
following weaker monotonicity property:

iii) for all E ⊆ E′ ⊆ S, p(E) ≤ p(E′).

We shall consider also qualitative probabilities, i.e. probabilities that are ex-
pressed on some ordinal scale L = {l0, l1, . . . , lr} such that for all i = 1, . . . , r
li denotes a greater degree of probability than li−1, with l0 representing the
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credibility that an event will not be verified for sure, and lr the credibility that
an event will be certainly verified.

To fix the ideas, let us consider the following example. An economic agent
is evaluating a certain number of possible investments F , the profits of which
depend on the realization of one state of the world in the set S = {s1, s2, s3}.
For example, for the investment f ∈ F the profit is 100, 000e in s1, 130, 000e
in s2 and 150, 000e in s3, that is f(s1) = 100, 000e , f(s2) = 130, 000e and
f(s3) = 150, 000e. To evaluate comprehensively each investment from F and
to compare them, it is not enough to know what is the profit in each state of the
world, but other information is necessary. First of all, it is necessary to know
which is the probability of each of the three states of the world. In this sense,
one possibility is that the economic agent knows a priori the probabilities of
each state of the world, for example p1 = 20%, p2 = 30% and p3 = 50% for
s1, s2 and s3, respectively. This is the case of an objective additive probability.
It is also possible that, due to some severe uncertainty on the realization of the
states of the world, only a non-additive probability is given. For example, due
to lack of knowledge about possible realization of s1 or s2, one can consider
a probability of p1 = 10% for s1, p2 = 15% for s2, while the probability
that one between s1 and s2 is realized is p12 = 50%, which is greater than
p1 + p2. It is worthwhile to remember that nonadditive probability is related
to ambiguity for non perfect knowledge of the probability of events suggested
by the famous Ellsberg paradox [19], in which in one box there are 90 balls,
30 of which are red and 60 are black or yellow in an unknown proportion.
In this case it is quite natural to assign a probability of 1/3 to extract a red
ball (because we know that 1/3 of the balls are red), a probability of 2/3 to
extract a black or yellow ball (because, even if their proportion is unknown,
we know that 2/3 of the balls are black or yellow), a probability let us say of
1/5 to extract a black ball and a probability of 1/5 to extract a yellow ball
(because, even if we know that in total black and yellow balls are the 2/3
of the balls in the box, we do not know exactly their proportion). It is also
possible that the economic agent does not know a priori any probability, but
she has some preferences on acts related to states of the world. For example,
she could consider indifferent an act giving 100e on s1 and nothing otherwise,
and an act giving with certainty 40e ; therefore, assuming that 40e should be
the expected value of the return for the considered act (i.e. 100e×p1 = 40e),
one could induce that the economic agent implicitly assigns a probability of
40% to s1. In this case, we have a subjective probability, which can be both
additive or nonadditive. Another possible situation is that the economic agent
could not know an a priori “objective” probability and, also, she could not
have a subjective probability, because, for example she would not be able or
could not want to say if she would exchange an act giving 100e on s1 and
nothing otherwise, with an act giving with certainty 40e or another monetary
amount. However, the economic agent could accept to give some qualitative
evaluations of the probability of s1, s2 and s3. For example, she could say that
s1 and s2 have a small probability, s3 has a medium probability, the event
{s1, s2} has also a medium probability, while the events {s1, s3} and {s2, s3}
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have a high probability. In this case we have qualitative probability expressed
on a scale L having among its elements “small”, “medium”, “high”.

Let us now remember that several models of decision under risk and uncer-
tainty have been proposed in the literature. In this context, the basic model
is the expected utility model which assigns to each act f ∈ F the value

EP (f) =
∑

si∈S

u(f(si))pi

with u : X → R being a utility function representing tastes of the DM on X.
The expected utility model has been considered in case of objective prob-

abilities [64], subjective probability [60] and both subjective and objective
probabilities [2]. To take into account nonadditive probability, a generaliza-
tion of the expected utility model based on the Choquet integral [10] has been
considered [61]. Other generalizations representing ambiguity for imperfect
knowledge of probabilities take into account a plurality of probabilities [4,27,
28].

To clarify the difference of our approach with respect to this literature, let
us remember that there are four main approaches to decision making (the first
three discussed in [3] and the fourth one proposed in [57]):

• the normative approach, that studies decisions on the basis of general ax-
ioms of rationality,

• the descriptive approach, that investigates through experiments how real
decisions are taken pointing out some systematic deviations from rational-
ity,

• the prescriptive approach, that aims at avoiding the systematic deviations
highlighted by the descriptive approach from the rationality postulated by
the first approach [35,59],

• the costructive approach, aiming at supporting a DM to construct her pref-
erences in complex decision problems, especially when a plurality of points
of view, technically called criteria, are involved.

While most of the literature on decision under risk and uncertainty has
adopted the first three approaches, we would like to propose a methodology
related to the fourth approach. In this sense, it is fundamental that the de-
cision model is expressed in terms that can be easily understood by the DM,
who has to find in the recommendation of the decision process the arguments
useful to explain and justify to herself and to other subjects the suggested
decision. In this perspective, the concept of quantile appears to be particuarly
useful. Indeed, especially when the states of the world are infinite and the
probability distribution is given by means of some analytical formulation, not
easily comprehensible even by a DM with a technical background, it is much
more reasonable to take into account some meaningful probability thresholds
and to reformulate the probability in terms of quantiles. In fact, in our real life
experience, very often in front of some risks we reason answering to questions
such as: “Which is the gain I can get with probability of 90% (or 75%, or 50%,



Robust Ordinal Regression for Decision under Risk and Uncertainty 5

or any other relevant probability threshold)?” or “Which is the loss I can in-
cur with probability of 10% (or 25% or 50%, or any other relevant probability
threshold)?” Quantiles have been extensively used in finance where, for exam-
ple, the p% Value at Risk is the worst p% loss [38]. Some axiomatic foundations
of decision based on quantiles have also been proposed in economics [9,48,56].
What is different in our proposal is that, following [31] (see also [50]), we sug-
gest to consider a certain number of quantiles rather than only one. In this
sense, a set of quantiles can be interpreted as a parsimonious but effective rep-
resentation of the whole information contained in a probability distribution,
taking into account the limited capability of human mind. Therefore, in line
with the famous Miller’s article “The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing Information” [51], we sug-
gest a number of quantiles between 5 and 9 because, as argued in that article,
this is the number of objects that a human brain can handle due to the limits
of one-dimensional absolute judgment and to the limits of short-term memory.
More formally, we propose to deal with decision problems in case of risk and
uncertainty considering a set of quantiles on the domain of criterion gj ∈ G
corresponding to a set of meaningful probability levels Pj = {π1, . . . , πhj

}. For
each π ∈ Pj , a value function gπj : A→ R is defined such that, for each a ∈ A,
gπj (a) = x means that, fixed the probability π, the minimum value got by a
on criterion gj with probability at least π is x. Therefore, for all j = 1, . . . ,m,
for all π ∈ Pj and for all a ∈ A,

gπj (a) = x ⇔ P (gj(a) ≥ x) ≥ π,

where P is a probability distribution on the space of values attainable by each
alternative from A on criteria from G. Therefore, we propose to deal with
uncertainty in MCDA by replacing uncertain criteria gj by the corresponding
set of value functions gπj , π ∈ Pj .

Let us note that, while “alternatives” are the objects of the decision in
MCDA, they are called “acts” in the framework of decision under risk and
uncertainty. Since our aim is dealing with the decision under risk and uncer-
tainty using the MCDA framework, in the following, we shall use the term
“alternative”.

Continuing the previous example and, considering the following quantiles
Pj = {π1, π2, π3} = {30%, 60%, 90%} relative to the criterion profit denoted
by f(s1) = 100, 000e, f(s2) = 130, 000e and f(s3) = 150, 000e, we have that
g30%j (a) = 150, 000e, g60%j (a) = 130, 000e, and g90%j (a) = 100, 000e. Let us
observe also that, as explained in [30], quantiles can be used also in case of
nonadditive probability and even qualitative probability.

As shown in [30], this approach can be extended to deal also with time
preferences. In this case, one considers a set of meaningful time epochs T =
{t1, . . . , tr}, such that for each criterion gj ∈ G, π ∈ Pj and t ∈ T, a function
gπ,tj is defined. For each a ∈ A, gπ,tj (a) = xmeans that, with respect to criterion
gj , action a gets at least value x within time epoch t with a probability at least
π.



6 Salvatore Corrente, Salvatore Greco, Benedetto Matarazzo, Roman S lowiński

For the sake of simplicity, in this paper we consider only the case of a sin-
gle criterion without considering time preferences, deferring to future research
discussion of these points. As already observed in [30], this new formulation of
decision under risk and uncertainty as a multiple criteria decision problem, can
be dealt with other methods proposed in MCDA, such as value function meth-
ods [43], outranking-based methods [8,25], decision rule methods inferred by
Dominance-based Rough Set Approach [32,62,63], interactive multiobjective
optimization and evolutionary multiobjective optimization methods [6]. In this
paper we shall describe how to handle the new formulation of the multiple cri-
teria decision problem by using an MCDA methodology that is particularly in
line with the principle of the constructive approach. This is the Robust Ordinal
Regression (ROR) [12,13,33]. ROR, as classical ordinal regression [36], asks
the DM to supply some preference information, for example in terms of some
pairwise comparisons between alternatives on which the preference of the DM
is certain. Both, ordinal regression and ROR aim at supporting the DM giving
some recommendations on the basis of the provided preference information.
However, adopted a given class of preference models, while ordinal regression
selects only one instance of the preference model among all representing the
preference information provided by the DM, ROR takes into account the whole
set of instances of the considered preference model compatible with the pref-
erence information. For example, if the adopted model is the additive multiple
attribute utility function, while ordinal regression selects a single utility func-
tion among all representing the preference information, ROR considers the
whole set of utility functions compatible with the preference information. To
give account of this plurality of instances, ROR presents recommendations in
terms of necessary and possible preference relations. Given two alternatives a
and b, a is (weakly) necessarily preferred to b, if a is at least as good as b for all
instances of the preference model compatible with the preference information
supplied by the DM, while a is (weakly) possibly preferred to b if a is at least as
good as b for at least one compatible instance of the preference model. A great
advantage of ROR is that, considering the whole set of compatible instances,
it avoids to arrive to premature conclusions on preferences as it is possible
with classical ordinal regression. Indeed, different compatible instances of the
preference model can give different preference relations, and therefore, it is
always arbitrary to some extent to select only one of them. Instead, it is more
cautious to separate stable preferences, those resulting from all compatible
instances, from unstable preferences, that hold for some compatible instance
but do not hold for some other ones. Necessary and possible preferences so
obtained can be presented to the DM who can react by accepting them or
criticizing them. If the DM accepts the necessary and the possible preferences,
and if she is satisfied by the results, she can conclude the decision process; on
the contrary, she can add new preference information in order to obtain more
precise results, i.e., a richer necessary preference relation. Actually, if the DM
criticizes the necessary and the possible preferences, she can modify some pref-
erence information in order to get results better representing her preferences.
In any case, ROR permits to open a discussion with the DM giving her the
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possibility to reflect on the decision problem, and to arrive to a mature and
convincing decision. For all these good properties, ROR has been applied to
several MCDA preference models, namely additive utility functions [14,21,33],
ELECTRE methods [15,29], PROMETHEE methods [39], Choquet integral
[1] and an enriched form of the additive utility function to take into account
interaction between criteria [34]. Thus, the constructive MCDA methodology
that we present in this approach is based on two pillars that give it its essen-
tial properties: on one hand, the representation of the probability in terms of
quantiles ensures the easy understanding by the DM while, on the other hand,
ROR permits a prudent inference of further preferences on the basis of the
current preference information supplied by the DM.

The paper is structured as follows: in Section 2 we introduce the notation
used in the paper; Section 3 recalls the different preference models used in
MCDA and the Robust Ordinal Regression (ROR); GRIP and ELECTREGKMS

are briefly described in Section 4; in Section 5, the new procedure is applied to
the newsvendor problem, while conclusions and further directions of research
are given in Section 6.

2 Notation

In this section we introduce the notation used in the paper. More details on
the meaning of the parameters will be provided in the sections describing the
models in which these parameters are involved.

• A = {a, b, c, . . .} - a finite set of n alternatives described over a family G
of m evaluation criteria,

• g1, . . . , gj , . . . , gm -m evaluation criteria, gj : A→ R for all j ∈ {1, 2, . . . ,m};
the family of criteria G is supposed to be consistent [58], that is exhaustive
(all relevant criteria are taken into account), coherent (if two alternatives
a and b have the same evaluations on all but one criterion, and a gets an
evaluation better than b on the remaining criterion, then a should be pre-
ferred to b), non-redundant (the removal of one criterion from the family
makes the new set of criteria not exhaustive);

• w1, . . . , wj , . . . , wm - importance coefficients (ELECTREGKMS only), where
wj represents the importance of criterion gj inside the family of criteria G;

• qj , pj and vj , j = 1, . . . ,m, being the indifference, preference and veto
thresholds, respectively (ELECTREGKMS only).

3 Preference models and Robust Ordinal Regression

Since the only information stemming from the evaluations of the alterna-
tives with respect to the different criteria is the dominance relation1, three

1 Supposing that all criteria are gain criteria, a dominates b if gj(a) ≥ gj(b) for all
j = 1, . . . ,m, and there exists at least one j such that gj(a) > gj(b).
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main approaches are used in MCDA to aggregate these evaluations, that are,
Multi-Attribute Value Theory (MAVT) [43], outranking methods [8,24] and
Dominance-Based Rough Set Approach (DRSA) [32,62]:

• MAVT represents preferences of a DM on a set of alternatives A by an
overall value function

U(a) = U(g1(a), . . . , gm(a)) : R
m

→ R (1)

such that a is at least as good as b iff U(a) ≥ U(b); in the following,
we shall suppose that the evaluation criteria are mutually preferentially
independent [43] and, consequently, the value function in eq.(1) can be
written in an additive way, that is,

U(a) =

m
∑

j=1

uj(gj(a)) (2)

where uj : R → R are marginal value functions, for each j = 1, . . . ,m;
• outranking methods represent preferences of a DM on a set of alternatives
A by an outranking relation S ⊆ A× A, such that, aSb iff a is at least as
good as b;

• DRSA is based on “if,..., then...” decision rules expressed in a natural
language for the DM, linking the performances of the alternatives on the
considered criteria with a comprehensive judgment of the alternative at
hand. For example, “if the consumption of a car is at least 15km/l and its
price is at most 10,000e, then the car is considered to be good.”

In this paper, we shall deal with the first two aggregation approaches.
In order to apply both families of methods, the DM should provide the pa-
rameters on which they are based, that are, marginal value functions uj(·),
j = 1, . . . ,m, in MAVT, and weights, indifference, preference and veto thresh-
olds, as well as the cutting level, for the outranking methods. These parameters
can be provided by the DM in a direct or in an indirect way [36,37]. In the
direct one, the DM has to give directly all the values of the parameters in-
volved in the model, while, in the indirect one, the DM gives some preferences
on reference alternatives (s)he knows well, from which, parameters compat-
ible with these preferences can be inferred. If the DM provides an indirect
preference information, in general, more than one instance of the model (a
value function in the MAVT case and a set of weights, thresholds and cut-
ting level in the second one) could be compatible with the preferences she
provided. Each of these models provides the same recommendations on the
reference alternatives but each of them could provide different recommenda-
tions on the other alternatives from the whole set A. To consider all models
compatible with the preferences of the DM, ROR has been proposed [12,13,
33]. ROR provides robust recommendations with respect to the problem at
hand, building a necessary and a possible preference relation. The necessary
and possible preference relations hold between two alternatives a and b if a is
at least as good as b for all or, respectively, for at least one instance of the
model compatible with the preferences provided by the DM.
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4 GRIP and ELECTREGKMS

The first method applying ROR concepts is UTAGMS . It is based on the
additive value function shown in eq. (2) and it is used to deal with ranking
and choice problems. In this section, we shall briefly recall two methods, that
are GRIP [23] and ELECTREGKMS [29]. GRIP is the generalization of the
UTAGMS method taking into account not only pairwise comparisons between
alternatives but also information on intensity of preferences between two pairs
of alternatives. ELECTREGKMS is the extension of the ELECTRE IS method
under the ROR framework.

4.1 GRIP

In the GRIP method, the DM is expected to provide the following indirect
preference information both at comprehensive and at partial level with respect
to a subset of reference alternatives AR ⊆ A:

• A partial preorder % on AR whose meaning is: for a∗, b∗ ∈ AR

a∗ % b∗ ⇔ “a∗ is at least as good as b∗ ”.

• A partial preorder %∗ on AR×AR, whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗ (c∗, d∗) ⇔ “a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗ ”.

• A partial preorder %(i,j) on AR whose meaning is: for a∗, b∗ ∈ AR,

a∗ %(i,j) b
∗ ⇔ “the marginal value of a∗ on criterion gi is at least as much

as the marginal value of b∗ on criterion gj”.

• A partial preorder %∗
(i,j) on AR × AR whose meaning is: for a∗,b∗,c∗,d∗ ∈

AR,

(a∗, b∗) %∗
(i,j) (c∗, d∗) ⇔ “a∗ is preferred to b∗ on criterion gi at least as much as

c∗ is preferred to d∗ on criterion gj , i, j ∈ G”.

Formally, a compatible value function is an additive value function, as that
one in eq. (2), satisfying the following set of constraints:
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U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗

U(a∗) = U(b∗) if a∗ ∼ b∗

U(a∗) − U(b∗) ≥ U(c∗) − U(d∗) + ε
U(c∗) ≥ U(d∗) + ε

}

if (a∗, b∗) ≻∗ (c∗, d∗)

U(a∗) − U(b∗) = U(c∗) − U(d∗) if (a∗, b∗) ∼∗ (c∗, d∗)
ui(a

∗) ≥ uj(b
∗) + ε if a∗ ≻(i,j) b

∗

ui(a
∗) = uj(b

∗) if a∗ ∼(i,j) b
∗

ui(a
∗) − ui(b

∗) ≥ uj(c
∗) − uj(d

∗) + ε if (a∗, b∗) ≻∗
(i,j) (c∗, d∗)

ui(a
∗) − ui(b

∗) = uj(c
∗) − uj(d

∗) if (a∗, b∗) ∼∗
(i,j) (c∗, d∗)
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k
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uj(x
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m
∑

j=1

uj(x
mj

j ) = 1



















































































EAR

where

• ≻, ≻∗, ≻(i,j) and ≻∗
(i,j) are the asymmetric parts of %, %∗, %(i,j) and %∗

(i,j),
while ∼, ∼∗, ∼(i,j) and ∼∗

(i,j) are their symmetric parts; for example, a ≻ b

iff a % b and not(b % a), while a ∼ b iff a % b and b % a;
• xkj , k = 0, . . . ,mj , are all different evaluations of the alternatives from A

on criterion gj , j = 1...,m; the values xkj , k = 0, ...,mj , are increasingly

ordered, i.e., x0j < x1j < ... < x
mj

j ; in particular, x0j = mina∈A gj(a), while

x
mj

j = maxa∈A gj(a);
• ε is an auxiliary variable used to convert the strict inequality constraints,

translating the preferences of the DM, in weak inequality constraints. For
example, the global preference of a∗ over b∗, translated to the inequality
U(a) > U(b), is converted to the constraint U(a) ≥ U(b) + ε.

To check if there exists at least one value function compatible with the pref-
erences provided by the DM, one has to solve the following LP problem:

ε(AR) = max ε, subject to EAR

.

If EAR

is feasible and ε(AR) > 0, then there exists at least one instance of
the model compatible with the preferences provided by the DM. Otherwise,
pieces of preference information causing the infeasibility need to be checked
by means of some of the methods presented in [53].

Given a, b ∈ A, and the following sets of constraints

U(b) ≥ U(a) + ε,

EAR

}

EN (a, b),
U(a) ≥ U(b),

EAR

}

EP (a, b)

we can say the following:

• a is necessarily preferred to b (a %N b), iff EN (a, b) is infeasible or, if
EN (a, b) is feasible and εN (a, b) ≤ 0, where εN (a, b) = max ε, subject to
EN (a, b);
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• a is possibly preferred to b (a %P b), iff EP (a, b) is feasible and εP (a, b) > 0,
where εP (a, b) = max ε, subject to EP (a, b).

More details from the computational point of view on the necessary and possi-
ble preference relations could be found in [11], while for some properties of the
necessary and possible preference relations, as well as for an axiomatic basis
of the same preference relations, the interested reader is referred to [33] and
[26], respectively.

In general, in ranking and choice problems, one needs to assign a real num-
ber to each alternative being representative of its value in the problem at hand.
For this reason, to summarize the results obtained by ROR, a representative
value function can be computed [22,40]. It is obtained in two steps maximiz-
ing, at first, the difference U(a)−U(b) for the pairs of alternatives (a, b) such
that a is strictly necessarily preferred to b and, then, minimizing the difference
U(a)−U(b) for the pairs of alternatives (a, b) such that a is possibly preferred
to b and b is possibly preferred to a. From a computational point of view, the
two steps are the following:

step 1) solve the LP problem:

max ε, subject to

U(a) ≥ U(b) + ε if a %N b and not(b %N a),

EAR

;

}

step 2) denoting by ε1 the value of ε optimizing the LP problem solved in step
1), solve the following LP problem:

min δ, subject to

U(a) − U(b) ≤ δ

U(b) − U(a) ≤ δ

}

if a %P b and b %P a,

ε = ε1,

EAR

.



















4.2 ELECTREGKMS

Before introducing the ELECTREGKMS method, we recall the basic aspects
of the ELECTRE IS method.
Given the weights of criteria w1, . . . , wm, such that wj ≥ 0 for all j = 1, . . . ,m,
and

∑m

j=1 wj = 1, and the indifference and preference thresholds, qj(a) and
pj(a), for all gain-type criteria gj , and for all a ∈ A, ELECTRE IS builds, for
each criterion gj , and for each pair of alternatives (a, b), the partial concor-
dance index

ϕj(a, b) =







1 if gj(b) − gj(a) ≤ qj(a)
gj(a)−[gj(b)−pj(a)]

pj(a)−qj(a)
if qj(a) ≤ gj(b) − gj(a) ≤ pj(a)

0 if gj(b) − gj(a) ≥ pj(a).
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The indifference and preference thresholds qj(a) and pj(a) have the following
meaning:

• qj(a) is the greatest difference between gj(b) and gj(a) compatible with
their indifference on criterion gj ,

• pj(a) is the smallest difference between gj(b) and gj(a) compatible with
the preference of b over a on criterion gj .

ϕj(a, b) ∈ [0, 1] for all j = 1, . . . ,m, and for each (a, b) ∈ A× A. It represents
the degree of preference of a over b with respect to criterion gj and it is a non-
increasing function of the difference gj(b) − gj(a). Observe that, for the sake
of simplicity, the indifference and preference thresholds could be considered
constant for each alternative a and, therefore, independent of the evaluations
gj(a).
After building the partial concordance indices φj(a, b), ELECTRE IS builds
the comprehensive concordance index C(a, b) for each (a, b) ∈ A× A, defined
as follows:

C(a, b) =
m
∑

j=1

ϕj(a, b) × wj .

C(a, b) ∈ [0, 1] and it represents the degree of preference of a over b. The
outranking relation of the ELECTRE IS method is therefore based on the
concordance and the non-discordance tests; the concordance test is verified if
C(a, b) ≥ λ, where λ ∈ [0.5, 1] is called the cutting level and it represents the
minimum coalition of criteria necessary to the outranking of a over b. The
non-discordance test is verified if, for all j = 1, . . . ,m, gj(b) − gj(a) < vj(a)
that is, for each criterion gj the difference in the performances of b and a on
criterion gj is lower than the veto threshold vj(a). From a formal point of
view, we can therefore write that

aSb iff C(a, b) ≥ λ and gj(b) − gj(a) < vj(a), for all j = 1, . . . ,m.

The negation of the preference relation S will be denoted by SC and, of course,
it will be true that aSCb if at least one of the concordance and the non-
discordance test is not fulfilled.

As already observed in Section 3, the application of the ELECTRE meth-
ods involves the knowledge of several parameters that are, weights of criteria,
indifference, preference and veto thresholds and the cutting level. In order to
induce a set of parameters, the DM can provide the following direct or indirect
preference information regarding the evaluation criteria and the comparison
between alternatives:

1) the weight wj of criterion gj belongs to the interval
[

wL
j , w

R
j

]

, where wL
j ≤

wR
j ,

2) criterion gi is more important than criterion gj , that is wi > wj ,
3) the indifference threshold for criterion gj related to alternative a, qj(a),

belongs to the interval
[

qLj (a), qRj (a)
]

, where qLj (a) ≤ qRj (a),
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4) the preference threshold for criterion gj related to alternative a, pj(a),
belongs to the interval

[

pLj (a), pRj (a)
]

, where pLj (a) ≤ pRj (a),
5) a ∼j b, that is “the difference between gj(a) and gj(b) is non-significant

for the DM”,
6) a ≻j b, that is “the difference between gj(a) and gj(b) is significant for the

DM”,
7) a outranks b, that is aSb,
8) a does not outrank b, that is aSCb.

Details on the constraints translating the preference information provided by
the DM can be found in [29] and, for the sake of completeness, also in the
Appendix A.

If the preferences of the DM are not inconsistent, in general, more than
one instance of the model (weights, thresholds and cutting level) compatible
with these preferences could be inferred. Even if there exists different methods
aiming to find only one model compatible with the preferences provided by
the DM (see for example [17,52]), in this section we shall concentrate our at-
tention on the ELECTREGKMS method. ELECTREGKMS takes into account
simultaneously all compatible instances of the outranking model defining, as
all ROR methods, a necessary and a possible preference relation as follows:

• a is necessarily preferred to b (denoted by aSNb), iff aSb for all compatible
instances of the model,

• a is possibly preferred to b (denoted by aSP b), iff aSb for at least one
compatible instance of the model.

Analogously, other two preference relations related to the non-outranking can
be defined:

• a does not necessarily outrank b (denoted by aSCNb), iff aSCb for all
compatible instances of the model,

• a does not possibly outrank b (denoted by aSCP b), iff aSCb for at least
one compatible instance of the model.

It is obvious that SN ⊆ SP and SCN ⊆ SCP . Moreover, it can easily be
proved that aSNb iff not(aSCP b) and aSP b iff not(aSCNb). The interested
reader could find these and other properties of the four preference relations in
[29]. Details on the computations of the necessary (SN ) and possible (SP ) pref-
erence relations can be found in [29] and, for the completeness of description,
in the Appendix B.

5 A didactic example concerning the newsvendor problem

The newsvendor problem is a classic problem of operational research that was
faced for the first time by the economist F.Y.Edgeworth in his paper “The
mathematical theory of banking” in 1888 [18]. The newsvendor problem con-
sists in finding the correct amount of a certain resource that should be bought,
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knowing the probability distribution of demand, in order to maximize the pay-
offs, from one side, or to minimize the costs from the other side. In the last
decade, tens of papers were published about this problem and its application in
different situations: buying seasonal goods, making the last buying or last pro-
duction run decision, setting safety stock levels, setting target inventory levels,
selecting the right capacity for a facility or machine, overbooking customers,
etc. Some literature reviews of the newsvendor problem are the following [44,
54,55].

Now, after formulating the problem in the nice case of the newsboy, we
will approach it in a new way, as announced in the introduction.

Let’s suppose the newsboy has to choose the number of newspapers to be
ordered. If he didn’t order enough newspapers he will have a stockout problem,
so that some customers will be disappointed and sales and profit will be lost. If
he orders too many newspapers, he will loose a certain amount of money. The
newsboy’s goal is, therefore, to choose the amount of newspapers maximizing
his gain. The newsboy evaluates that each newspaper involves the following
costs and gains:

• Unit cost, c = 1.4 e,
• Unit selling price, p = 2 e,
• Salvage value (estimated worth of a newspaper not sold), s = 1 e,
• Stockout cost (cost of buying one unit less than the demand), sc = 0.15 e.

Let’s suppose that the newsboy has to choose to order among 5, . . . , 17 newspa-
pers, and that the demand can assume values 5, 6, 7, 8, 9, 10 with probability
5%, values 11, 12, 13, 14, 15, 16, 17, with probability 10%, and probability 0%
otherwise. Formally,

pr =











5% if r ∈ {5, . . . , 10}

10% if r ∈ {11, . . . , 17}

0% otherwise

Denoting by D the demand of newspapers and by Q the number of ordered
newspapers, the newsboy’s gain, denoted by G(Q,D), is the following:

G(Q,D) = p·min (Q,D) − c ·Q+ s · max (Q−D, 0)−sc·max (0, D −Q). (3)

Table 1 contains the gain for the newsboy as a function of the demand and
of the number of newspapers bought. For each k = 5, . . . , 17 and for each
j = 5, . . . , 17, z(Qk, Dj) is the probability that buying Qk newspapers the
newsboy will gain not less than G(Qk, Dj). Formally,

z(Qk, Dj) =
∑

r: G(Qk,Dr)≥G(Qk,Dj)

pr.

z(Qk, Dj) = p could be interpreted such that buying Qk newspapers the news-
boy will gain not less than G(Qk, Dj) with probability p. In Table 2, we show
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Table 1: Possible gains of the newsboy depending on the demand and on the
number of ordered newspapers expressed in e

G(Qk, Dj) D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

Q5 3.00 2.85 2.70 2.55 2.40 2.25 2.10 1.95 1.80 1.65 1.50 1.35 1.20

Q6 2.60 3.60 3.45 3.30 3.15 3.00 2.85 2.70 2.55 2.40 2.25 2.10 1.95

Q7 2.20 3.20 4.20 4.05 3.90 3.75 3.60 3.45 3.30 3.15 3.00 2.85 2.70

Q8 1.80 2.80 3.80 4.80 4.65 4.50 4.35 4.20 4.05 3.90 3.75 3.60 3.45

Q9 1.40 2.40 3.40 4.40 5.40 5.25 5.10 4.95 4.80 4.65 4.50 4.35 4.20

Q10 1.00 2.00 3.00 4.00 5.00 6.00 5.85 5.70 5.55 5.40 5.25 5.10 4.95

Q11 0.60 1.60 2.60 3.60 4.60 5.60 6.60 6.45 6.30 6.15 6.00 5.85 5.70

Q12 0.20 1.20 2.20 3.20 4.20 5.20 6.20 7.20 7.05 6.90 6.75 6.60 6.45

Q13 −0.20 0.80 1.80 2.80 3.80 4.80 5.80 6.80 7.80 7.65 7.50 7.35 7.20

Q14 −0.60 0.40 1.40 2.40 3.40 4.40 5.40 6.40 7.40 8.40 8.25 8.10 7.95

Q15 −1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 8.85 8.70

Q16 −1.40 −0.40 0.60 1.60 2.60 3.60 4.60 5.60 6.60 7.60 8.60 9.60 9.45

Q17 −1.80 −0.80 0.20 1.20 2.20 3.20 4.20 5.20 6.20 7.20 8.20 9.20 10.20

Table 2: Values of z(Qk, Dj) with k, j = 5, . . . , 17 expressed in percentage.
z(Qk, Dj) represents the probability that buying Qk newspapers the newsboy
will gain not less than G(Qk, Dj)

z(Qk, Dj) D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

Q5 5 10 15 20 25 30 40 50 60 70 80 90 100

Q6 50 5 10 15 20 25 35 45 60 70 80 90 100

Q7 100 55 5 10 15 20 30 40 50 65 75 85 95

Q8 100 95 60 5 10 15 25 35 45 55 70 80 90

Q9 100 95 90 65 5 10 20 30 40 50 60 75 85

Q10 100 95 90 85 70 5 15 25 35 45 55 65 80

Q11 100 95 90 85 80 75 10 20 30 40 50 60 70

Q12 100 95 90 85 80 75 70 10 20 30 40 50 60

Q13 100 95 90 85 80 75 70 60 10 20 30 40 50

Q14 100 95 90 85 80 75 70 60 50 10 20 30 40

Q15 100 95 90 85 80 75 70 60 50 40 10 20 30

Q16 100 95 90 85 80 75 70 60 50 40 30 10 20

Q17 100 95 90 85 80 75 70 60 50 40 30 20 10
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the values of z(Qk, Dj), with k, j = 5, . . . , 17. Choosing to buy Qk newspapers,
k = 5, . . . , 17, the best realization of the demand for the newsboy is Dj∗ such
that z(Qk, Dj∗) = min

j∈{5,...,17}
z(Qk, Dj).

After computing the values of z(Qk, Dj), for all k, j = 5, . . . , 17, for each
quantile π ∈ [0, 1] one can define the following quantity:

ρ(Qk, π) = max
j: z(Qk,Dj)≥π

{G(Qk, Dj)} . (4)

ρ(Qk, π) is the minimum gain the newsboy gets with probability at least equal
to π when buying Qk newspapers. The computation of ρ(Qk, π) can be ex-
plained in an easy way. Suppose the newsboy decides to buy 10 newspapers
(Qk = 10). We order the possible corresponding gains from the lowest to the
greatest one as shown in Table 3 and, under the possible gains G(Q10, Dj), we
show the corresponding probabilities z(Q10, Dj). After choosing, for example,
the quantile π = 75%, we look at the gains that could be obtained with prob-
ability no lower than 75%, that are 1e, 2e, 3e, 4e and 4.95e, and we take
the maximum among them, that is 4.95e. Obviously, in the extreme cases,
choosing to buy 10 newspapers, the newsboy will gain with probability 99%
at least 1e (ρ(Q10, 99%) = 1e) and with probability of the 1%, at least 6e
(ρ(Q10, 1%) = 6e).

Table 3: Practical explanation of the computation of ρ(Q10, 75%)

D5 D6 D7 D8 D17 D9 D16 D15 D14 D13 D12 D11 D10

G(Q10, Dj) 1 2 3 4 4.95 5 5.10 5.25 5.40 5.55 5.70 5.85 6

z(Q10, Dj) 100 95 90 85 80 70 65 55 45 35 25 15 5

In Table 4 we show the values of ρ(Qk, π), with k = 5, . . . , 17, corresponding
to the meaningful quantiles for the DM {1%, 25%, 50%, 75%, 99%}.

5.1 GRIP applied to the newsvendor problem

To help the newsboy to find the best number of newspapers to order, at first we
will use the GRIP method; the newsboy can compare reference alternatives
at comprehensive level, i.e. on all criteria, and at the partial level, i.e. on
particular criteria.

Without any further information, the only information stemming from the
values in Table 4 is the dominance relation ∆ on the set of alternatives (in
our case the different numbers of newspapers that could be bought from the
newsboy) shown in Figure 1.
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Table 4: Values of ρ(Qk, π), with k = 5, . . . , 17, corresponding to the mean-
ingful quantiles for the DM {1%, 25%, 50%, 75%, 99%}

ρ(Qk, π) 1% 25% 50% 75% 99%

Q5 3.00 2.40 1.95 1.50 1.20

Q6 3.60 3.00 2.60 2.25 1.95

Q7 4.20 3.60 3.30 3.00 2.20

Q8 4.80 4.35 3.90 3.60 1.80

Q9 5.40 4.95 4.65 4.35 1.40

Q10 6.00 5.70 5.25 4.95 1.00

Q11 6.60 6.30 6.00 5.60 0.60

Q12 7.20 6.90 6.60 5.20 0.20

Q13 7.80 7.50 7.20 4.80 −0.20

Q14 8.40 8.10 7.40 4.40 −0.60

Q15 9.00 8.70 7.00 4.00 −1.00

Q16 9.60 8.60 6.60 3.60 −1.40

Q17 10.20 8.20 6.20 3.20 −1.80

Q5

Q6

Q7

Q8 Q9

Fig. 1: Dominance relation on the set of considered alternatives

Let us suppose that the newsboy is confident on expressing four prefer-
ences regarding the alternatives Q6, Q7, Q12 and Q17; at first he says that,
the difference between the evaluations of Q12 and Q6 with respect to quan-
tile 75% is greater than the difference between the evaluations of Q6 and Q12

with respect to quantile 99%. This piece of preference information is trans-
lated to the constraints u75%(Q12) − u75%(Q6) > u99%(Q6) − u99%(Q12) and
u99%(Q6)−u99%(Q12) > 0. Including this piece of preference information, the
corresponding necessary preference relation is shown in Figure 2. Bold arrows
in Figure 2 represent new pairs in the necessary preference relation resulting
from the first piece of preference information provided by the DM. Therefore,
Q11 and Q12 are necessarily preferred to Q6.



18 Salvatore Corrente, Salvatore Greco, Benedetto Matarazzo, Roman S lowiński

Q5

Q6

Q7

Q8 Q9

Q11 Q12

Fig. 2: Necessary preference relation obtained after including the first piece of
preference information provided by the DM. Bold arrows represent new pairs
of alternatives in the necessary preference relation

After that, the newsboy gives another piece of preference information at
the partial level. Supposing to buy 7 newspapers, the newsboy prefers gaining
at least 3e with probability 75% than 2.20e with probability 99%, showing,
therefore, to be quite risk prone. The constraint translating this piece of pref-
erence information is u75%(Q7) > u99%(Q7). In Figure 3, we show the new
necessary preference relation obtained after including the second piece of pref-
erence information provided by the DM. As one can observe, in consequence of
this piece of information, six new pairs appear in the new necessary preference
relation with respect to that one obtained in the previous step. In particular,
Q10, Q13, Q14, Q15, Q16 and Q17 are now necessarily preferred to Q5.

Q5

Q6

Q7

Q8 Q9

Q11 Q12

Q13 Q14 Q15 Q16 Q17 Q10

Fig. 3: Necessary preference relation obtained after including the second piece
of preference information provided by the DM. Bold arrows represent new
pairs of alternatives in the necessary preference relation

In the end, the newsboy provides the third piece of preference informa-
tion stating, on one hand, that Q17 is preferred to Q7 and, on the other
hand, that Q12 is preferred to Q17 more than Q7 is preferred to Q6. The con-
straints translating this piece of preference information are U(Q17) > U(Q7)
and U(Q12)−U(Q17) > U(Q7)−U(Q6). The new necessary preference relation
is shown in Figure 4.
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Q5

Q6

Q7

Q8 Q9

Q11

Q12

Q17

Q13 Q14 Q15 Q16 Q10

Fig. 4: Necessary preference relation obtained after including the last piece of
preference information provided by the DM. Bold arrow represents the new
pair of alternatives in the necessary preference relation

Since not all alternatives are pairwise comparable in Figure 4 and the
newsboy would like to have a complete ranking of the alternatives at hand, we
compute a representative value function summarizing the ROR results. The
marginal utilities and the comprehensive utility of each alternative are shown
in Table 5. Looking at results in Table 5 it appears that the best choice for
the newsboy is buying 12 newspapers, followed by the possibility of buying
11 newspapers, and so on. Analogously, the worst choice for the newsboy is
buying 5, 6 and 7 newspapers, being the alternatives presenting the lowest
comprehensive utilities.

5.2 ELECTREGKMS applied to the newsvendor problem

In this subsection, we shall show how to apply the ELECTREGKMS method
to obtain robust recommendations on the same problem we dealt with GRIP,
on the base of the preference information provided by the DM; for the sake of
simplicity, we shall suppose that the newsboy is able to provide the indifference,
preference and veto thresholds shown in Table 6. As a consequence, in this
problem, the unknown parameters are the cutting level λ and the weights
underlining the importance assigned to the considered quantiles.

Let’s suppose that the newsboy states that Q12 outranks Q6 (Q12SQ6) and, at
the same time, Q5 does not outrank Q8 (Q5S

CQ8). By solving the program-
ming problem presented in Appendix A, there exists at least one instance of
the preference model compatible with the preference provided by the DM.
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Table 5: Marginal Utilities with respect to the five quantiles and comprehensive
utility of the alternatives at hand obtained by applying a representative value
function

u1% u25% u50% u75% u99% U

Q5 0 0 0 0 ∼ 0 ∼ 0

Q6 0.0384 0.0384 0.0368 0.0864 ∼ 0 ∼ 0.2

Q7 0.0647 0.0647 0.0619 0.2087 ∼ 0 ∼ 0.4

Q8 0.0966 0.0966 0.0914 0.2487 ∼ 0 ∼ 0.5333

Q9 0.0966 0.0966 0.0914 0.2487 ∼ 0 ∼ 0.5333

Q10 0.0966 0.0966 0.0914 0.3522 ∼ 0 ∼ 0.6368

Q11 0.0966 0.0966 0.0914 0.5821 ∼ 0 ∼ 0.8667

Q12 0.1289 0.1289 0.1601 0.5821 ∼ 0 ∼ 1

Q13 0.1289 0.1289 0.1601 0.2487 ∼ 0 ∼ 0.6667

Q14 0.1289 0.1289 0.1601 0.2487 ∼ 0 ∼ 0.6667

Q15 0.1289 0.1289 0.1601 0.2487 ∼ 0 ∼ 0.6667

Q16 0.1289 0.1289 0.1601 0.2487 ∼ 0 ∼ 0.6667

Q17 0.1289 0.1289 0.1190 0.2232 0 ∼ 0.6

Table 6: Thresholds on ρ(Qk, π) provided by the DM for the considered quan-
tiles

qπ pπ vπ

π = 1% 1.0 2.0 4.0

π = 25% 1.0 2.0 4.0

π = 50% 0.5 1.5 3.0

π = 75% 0.5 1.5 3.0

π = 99% 0.5 1.5 3.0

On the basis of this preference information, we obtained the necessary and
possible outranking relations shown in Tables 7 and 8.

To summarize the results got by the application of the ROR in this case,
we use the same procedure presented in [29]. On the base of the results shown
in Tables 7 and 8, and reminding that aSCP b iff not(aSNb), and aSCNb iff
not(aSP b), for each alternative Qk, k = 5, . . . , 17, we computed the following
values, where A = {Qk, k = 5, . . . , 17}:

• TSN (Qk) =
∣

∣Qr ∈ A, r 6= k : QkS
NQr

∣

∣; that is the number of alternatives
Qr ∈ A such that Qk necessarily outranks Qr,

• WSN (Qk) =
∣

∣Qr ∈ A, r 6= k : QrS
NQk

∣

∣; that is the number of alternatives
Qr ∈ A such that Qr necessarily outranks Qk,
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Table 7: Necessary outranking relation for the ELECTREGKMS method com-
puted on the base of the preference information provided by the DM

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Q5 1 0 0 0 0 0 0 0 0 0 0 0 0

Q6 1 1 0 0 0 0 0 0 0 0 0 0 0

Q7 1 1 1 0 0 0 0 0 0 0 0 0 0

Q8 1 1 1 1 0 0 0 0 0 0 0 0 0

Q9 1 1 1 1 1 0 0 0 0 0 0 0 0

Q10 1 1 1 1 1 1 0 0 0 0 0 0 0

Q11 1 1 1 1 1 1 1 0 0 0 0 0 0

Q12 1 1 1 1 1 1 1 1 0 0 0 0 0

Q13 1 1 1 1 1 1 0 1 1 1 0 0 0

Q14 1 1 1 1 1 0 0 0 1 1 1 0 0

Q15 1 1 0 1 1 0 0 0 0 1 1 1 0

Q16 1 0 0 0 0 0 0 0 0 0 1 1 1

Q17 0 0 0 0 0 0 0 0 0 0 0 1 1

Table 8: Possible outranking relation for the ELECTREGKMS method com-
puted on the base of the preference information provided by the DM

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Q5 1 1 1 1 0 0 0 0 0 0 0 0 0

Q6 1 1 1 1 1 0 0 0 0 0 0 0 0

Q7 1 1 1 1 1 1 0 0 0 0 0 0 0

Q8 1 1 1 1 1 1 1 0 0 0 0 0 0

Q9 1 1 1 1 1 1 1 1 1 1 1 0 0

Q10 1 1 1 1 1 1 1 1 1 1 1 1 0

Q11 1 1 1 1 1 1 1 1 1 1 1 1 1

Q12 1 1 1 1 1 1 1 1 1 1 1 1 1

Q13 1 1 1 1 1 1 1 1 1 1 1 1 1

Q14 1 1 1 1 1 1 1 1 1 1 1 1 1

Q15 1 1 0 1 1 1 1 1 1 1 1 1 1

Q16 1 0 0 0 1 1 1 1 1 1 1 1 1

Q17 0 0 0 0 0 1 1 1 1 1 1 1 1
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• TSCN (Qk) =
∣

∣Qr ∈ A : not(QrS
PQk)

∣

∣; that is the number of alternatives
Qr ∈ A such that Qr does not possibly outrank Qk,

• WSCN (Qk) =
∣

∣Qr ∈ A : not(QkS
PQr)

∣

∣; that is the number of alternatives
Qr ∈ A such that Qk does not possibly outrank Qr,

• T (Qk) = TSN (Qk) + TSCN (Qk), W (Qk) = WSN (Qk) + WSCN (Qk) and
NFS(Qk) = T (Qk) −W (Qk).

Table 9: Values summarizing the results of the necessary and possible outrank-
ing relations provided in Tables 7 and 8

TSN (Q) WSN (Q) TSCN (Q) WSCN (Q) T (Q) W (Q) NFS(Q)

Q5 0 11 1 9 1 20 −19

Q6 1 9 2 8 3 17 −14

Q7 2 7 3 7 5 14 −9

Q8 3 7 2 6 5 13 −8

Q9 4 6 2 2 6 8 −2

Q10 5 3 2 1 7 4 3

Q11 6 1 3 0 9 1 8

Q12 7 1 4 0 11 1 10

Q13 8 1 4 0 12 1 11

Q14 7 2 4 0 11 2 9

Q15 6 2 4 1 10 3 7

Q16 3 2 5 3 8 5 3

Q17 1 1 6 5 7 6 1

By using the values of the Net Flow Score (NFS) shown in Table 9, we obtain
the following complete ranking of the alternatives at hand:

Q13 ≻ Q12 ≻ Q14 ≻ Q11 ≻ Q15 ≻ Q16 ∼ Q10 ≻ Q17 ≻ Q9 ≻ Q8 ≻ Q7 ≻ Q6 ≻ Q5.

In this case, one can see that the best choice for the newsboy is buying 13
newspapers while, the worst one, is buying 5 newspapers only. As one can see,
while both methods (GRIP and ELECTREGKMS) recommend that buying
5 newspapers is the worst choice for the newsboy, the recommendation on
the best choice is different on the two methods (12 newspapers is the best
choice if one applies GRIP, while 13 is the best choice if one decides to use
ELECTREGKMS). This is not surprising since GRIP, as all additive methods,
is a compensatory method while ELECTREGKMS , as all outranking methods,
is not compensatory.
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6 Conclusions

In this paper we presented a new methodology to handle decision under risk
and uncertainty in a constructive approach. This methodology is based on two
points:

• On one hand, the risk and the uncertainty is represented through mean-
ingful quantiles. They are very manageable, since they permit to deal with
additive and nonadditive probabilities as well as with qualitative probabil-
ities. Quantiles are very understandable for the DM because, taking into
account the limitation of the human mind, few quantiles can synthesize
all the very often rich and complex information contained in a probability
distribution.

• On the other hand, ROR is used to induce in a cautious way new pref-
erences from the whole set of instances of the adopted preference model
compatible with the preference information supplied by the DM.

We have shown in an illustrative example how the proposed methodology can
be applied to a very classical problem of operational research, namely the
newsvendor problem. We believe that the proposed methodology has quite
good properties and that the results shown by the illustrative example are
convincing. This encourages to further develop this approach in a number of
directions that we sketch in the following:

• in this paper we considered application of ROR to additive multiple at-
tribute value functions and ELECTRE approach, but there are other MCDA
methods to which ROR has been applied and that can be used to handle
decision under risk and uncertainty, such as PROMETHEE methods [39],
Choquet integral [1] and an enriched multiattribute value function [34];

• our methodology could be applied also to Stochastic Ordinal Regression

(SOR) [41,42] which has been recently proposed, coupling ROR with Stochas-
tic Multicriteria Acceptability Analysis (SMAA) [46] in which a probability
distribution is considered on the family of all compatible instances of the
preference model to determine the probability that alternative a is pre-
ferred to alternative b, or that alternative a ranks in the k-th position;

• ROR has been recently coupled with Evolutionary Multiobjective Opti-
mization (EMO) [16], to focus the research of the nondominated solutions
in the part of Pareto front that is the most preferred by the DM [5,7]; our
methodology of decision under risk and uncertainty can also be applied to
this class of EMO algorithms based on ROR;

• in this paper we considered the newsvendor problem, however, there are
many other problems in operational research formulated in terms of deci-
sion under risk and uncertainty; only to give another classical example, let
us mention the Markowitz’s financial portfolio choice problem [49], that
has been already treated in terms of quantiles but considering ordinal re-
gression rather than ROR in [30];

• in this paper we considered risk and uncertainty in monocriterion problems
that were transformed in multicriteria problems using quantiles; however,
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we can apply our methodology also in the context of risk and uncertainty
related to a plurality of criteria, and for each criterion we can consider a
certain number of quantiles;

• one can consider not only the aspect of risk and uncertainty, but also the
aspect of distribution of the consequences of a decision over time, which
is a common framework in which practically all real world problems are
formulated. Our approach can be extended to take into account also this
aspect.

In conclusion, we believe that, since our approach permits to deal in an
effective way with the risk and uncertainty aspects present in all real world
decision problems, it can be considered as an important component of the
toolboox of operational research.
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24. J. R. Figueira, S. Greco, R. S lowiński, and B. Roy. An overview of ELECTRE methods
and their recent extensions. Journal of Multi-Criteria Decision Analysis, 20:61–85, 2013.

25. J. Figueira, V. Mousseau, and B. Roy. ELECTRE methods. Multiple Criteria Decision
Analysis: State of the Art Surveys, pages 133–153, 2005.

26. A. Giarlotta and S. Greco. Necessary and possible preference structures. Journal of
Mathematical Economics, 49(2):163–172, 2013.

27. I. Gilboa, F. Maccheroni, M. Marinacci, and D. Schmeidler. Objective and subjective
rationality in a multiple prior model. Econometrica, 78(2):755–770, 2010.

28. I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal
of mathematical economics, 18(2):141–153, 1989.
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Appendix A (Constraints of the ELECTREGKMS method)

In this Appendix, we shall give more details on the technical constraints of

the ELECTREGKMS method as well as on the constraints translating the

preference information provided by the DM.

• Preference information on comparisons between alternatives a∗, b∗ ∈ AR ⊆

A:

– For all (a∗, b∗) ∈ AR such that a∗Sb∗:

C(a∗, b∗) =

m
∑

j=1

ψj(a
∗, b∗) ≥ λ and gj(b

∗)−gj(a
∗) < vj(a

∗), j = 1, . . . ,m,

where ψj(a, b) = ϕj(a, b) × wj for all j and for all (a, b) ∈ A×A.

– For all (a∗, b∗) ∈ AR such that a∗SCb∗:

C(a∗, b∗) =

m
∑

j=1

ψj(a
∗, b∗) < λ or ∃j ∈ G : gj(b

∗) − gj(a
∗) ≥ vj(a

∗),

which can be modeled as:

C(a∗, b∗) =

m
∑

j=1

ψj(a
∗, b∗) < λ+M0(a∗, b∗) and gj(b

∗)−gj(a
∗) ≥ vj(a

∗)−δMj(a
∗, b∗),

where Mj(a
∗, b∗) ∈ {0, 1}, j = 0, . . . ,m,

m
∑

j=0

Mj(a
∗, b∗) ≤ m and δ is

an auxiliary variable equal to a big positive value (i.e. δ ≥ maxj{x
mj

j −

x0j}).

A vector M of binary variables is used to express that either the con-

cordance test or non-discordance test has to be negative. Notice that

if Mj(a
∗, b∗) = 0, then a corresponding j-th condition causes discor-

dance with statement a∗Sb∗. On the contrary, if Mj(a
∗, b∗) = 1, then

the respective condition is always satisfied, not making veto. However,

there has to be at least one non-equality for which Mj(a
∗, b∗) = 0, as

m
∑

j=0

Mj(a
∗, b∗) ≤ m.

• Limitations on the values of inter-criteria parameters: λ, vj(a), ∀a ∈ A,

and wj j = 1, . . . ,m:

– The range of allowed values of a concordance threshold, 0.5 ≤ λ ≤ 1.0,

– Normalization of the marginal concordance indices for all criteria so

that the indices corresponding to the largest difference in evaluations
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of two alternatives on each criterion (gj(a
∗
j )− gj(aj,∗) = x

mj

j −x0j ) sum

up to 1:

m
∑

j=1

ψj(a
∗
j , aj,∗) = 1 with a∗j , aj,∗ ∈ A, j = 1, . . . ,m.

As we previously normalized weights of the criteria so that they sum up

to 1, each weight is now understood as a maximal share of each criterion

in the global concordance index. Consequently, wj = ψj(a
∗
j , aj,∗), j =

1, . . . ,m.

– Lower bounds on the values of veto thresholds vj(a), j = 1, . . . ,m, ∀a ∈

A:

• vj(a) needs to be larger than corresponding preference threshold

(the greatest value of a preference threshold pRj (a) allowed by the

DM), vj(a) > pRj (a), j ∈ G1
2,

• vj(a) is required to be larger than gj(b)−gj(a) for all pairs of alter-

natives (a, b) for which the DM stated that the difference between

gj(a) and gj(b) is non-significant (gj(a) ≤ gj(b)), a ∼j b, j ∈ G2
3

(we do not refer here to pairs (a∗, b∗) such that a∗ ≻j b
∗, because

even if the DM states that the difference between gj(a
∗) and gj(b

∗)

is relevant, the veto threshold vj can still be less, equal, or larger

than gj(a
∗) − gj(b

∗)).

– The function determining the values of veto thresholds vj(a) is required

to be monotone non-decreasing with respect to gj(a):

vj(a) ≥ vj(b) if gj(a) > gj(b) and vj(a) = vj(b) if gj(a) = gj(b), j = 1, . . . ,m.

If the DM wishes to model the veto threshold with a constant value

(not dependent on gj(a)), we would skip the monotonicity constraints

and replace vj(a) with vj in all aforementioned formulas.

• Restrictions concerning the value of marginal concordance indices ψj(a, b), j =

1, . . . ,m:

– ψj(a, b) = 0 if gj(b) − gj(a) ≥ pRj (a), for all (a, b) ∈ A×A,

– ψj(a, b) > 0 if gj(a) − gj(b) > −pLj (a) for all (a, b) ∈ A×A,

– ψj(a, b) = ψj(a
∗
j , aj,∗) if gj(a) − gj(b) ≥ −qLj (a), for all (a, b) ∈ A×A;

– ψj(a, b) < ψj(a
∗
j , aj,∗) if gj(b) − gj(a) > qRj (a), for all (a, b) ∈ A×A,

2 G1 is the subset of criteria G on which the DM has expressed direct preferences of the
type 3. and 4. shown in Section 4.2

3 G2 is the subset of criteria G on which the DM has expressed indirect preferences of the
type 5. and 6. shown in Section 4.2
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– ψj(a, b) = 0 if b ≻j a,

– ψj(a, b) = ψj(a
∗
j , aj,∗), ψj(b, a) = ψj(a

∗
j , aj,∗) if a ∼j b.

• Monotonicity of the functions of marginal concordance indices ψj(a, b), j =

1, . . . ,m:

– If, according to the preferences of the DM, indifference qj and pref-

erence pj thresholds for criterion gj are not dependent on gj(a), then

∀a, b, c, d ∈ A, and for j = 1, . . . ,m:

• ψj(a, b) ≥ ψj(c, d) if gj(a) − gj(b) > gj(c) − gj(d),

• ψj(a, b) = ψj(c, d) if gj(a) − gj(b) = gj(c) − gj(d).

– If according to the preferences of the DM indifference qj(a) and pref-

erence pj(a) thresholds depend on the value of gj(a), then, for j =

1, . . . ,m:

• ψj(a, c) ≥ ψj(b, c) if gj(a) > gj(b) for all a, b, c ∈ A,

• ψj(a, c) = ψj(b, c) if gj(a) = gj(b) for all a, b, c ∈ A,

• ψj(a, b) ≥ ψj(a, c) if gj(b) < gj(c) for all a, b, c ∈ A,

• ψj(a, b) = ψj(a, c) if gj(b) = gj(c) for all a, b, c ∈ A.

The whole set of monotonicity and normalization constraints together with
the constraints translating the preference information provided by the DM is

denoted by EAR′

:
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Pairwise comparison stating a∗Sb∗ or a∗SCb∗:

C(a∗, b∗) =
∑m

j=1 ψj(a
∗, b∗) ≥ λ and gj(b

∗) − gj(a
∗) + ε ≤ vj(a

∗), j = 1, . . . ,m,

if a∗Sb∗, for (a∗, b∗) ∈ AR,

C(a∗, b∗) =
∑m

j=1 ψj(a
∗, b∗) + ε ≤ λ+M0(a∗, b∗) and gj(b

∗) − gj(a
∗) ≥ vj(a

∗) − δMj(a
∗, b∗),

if a∗SCb∗, for (a∗, b∗) ∈ AR,
Mj(a

∗, b∗) ∈ {0, 1}, j = 0, . . . ,m,
∑m

j=0Mj(a
∗, b∗) ≤ m,

Values of inter-criteria parameters:

0 ≤ λ ≤ 1,
∑m

j=1 ψj(a
∗
j , aj,∗) = 1, for all j = 1, . . . ,m : (gj(a

∗
j ) = x

mj

j ) and (gj(aj,∗) = x0j )

with a∗j , aj,∗ ∈ A, j = 1, . . . ,m,

vj(a) ≥ pRj (a) + ε, j = 1, . . . ,m, for all a ∈ A,

vj(a) ≥ gj(b) − gj(a) + ε if a ∼j b, and gj(a) ≤ gj(b), j ∈ G2,

vj(a) ≥ vj(b) if gj(a) > gj(b), j = 1, . . . ,m, for all (a, b) ∈ A×A,

vj(a) = vj(b) if gj(a) = gj(b), j = 1, . . . ,m, for all (a, b) ∈ A×A,

Values of marginal concordance indices conditioned by intra-criterion preference information:

ψj(a, b) = 0 if gj(a) − gj(b) ≤ −pRj (a), for all (a, b) ∈ A×A, j ∈ G1,

ψj(a, b) ≥ ε if gj(a) − gj(b) > −pLj (a), for all (a, b) ∈ A×A, j ∈ G1,

ψj(a, b) = ψj(a
∗
j , aj,∗) if gj(a) − gj(b) ≥ −qLj (a), for all (a, b) ∈ A×A, j ∈ G1,

ψj(a, b) + ε ≤ ψj(a
∗
j , aj,∗) if gj(a) − gj(b) < −qRj (a), for all (a, b) ∈ A×A, j ∈ G1,

ψj(a, b) = ψj(a
∗
j , aj,∗), ψj(b, a) = ψj(a

∗
j , aj,∗) if a ∼j b, j ∈ G2,

ψj(a, b) = 0 if b ≻j a, j ∈ G2,

Monotonicity of the functions of marginal concordance indices:

If the thresholds for gj are not dependent on gj(a):

ψj(a, b) ≥ ψj(c, d) if gj(a) − gj(b) > gj(c) − gj(d), for all a, b, c, d ∈ A, j = 1, . . . ,m,

ψj(a, b) = ψj(c, d) if gj(a) − gj(b) = gj(c) − gj(d), for all a, b, c, d ∈ A, j = 1, . . . ,m,

If the thresholds for gj are dependent on gj(a):

ψj(a, c) ≥ ψj(b, c) if gj(a) > gj(b), for all a, b, c ∈ A, j = 1, . . . ,m,

ψj(a, c) ≥ ψj(b, c) if gj(a) = gj(b), for all a, b, c ∈ A, j = 1, . . . ,m,

ψj(a, b) ≥ ψj(a, c) if gj(b) < gj(c), for all a, b, c ∈ A, j = 1, . . . ,m,

ψj(a, b) ≥ ψj(a, c) if gj(b) = gi(c), for all a, b, c ∈ A, j = 1, . . . ,m.
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Analogously to what has been done in Section 4.1, to verify the feasibility

of this set of constraints EAR′

by linear programming, one has to transform

the strict inequality constraints into weak inequalities involving a variable ε.

EAR′

has the form of 0-1 mixed integer program (MIP). If EAR′

is feasible

and ε∗ > 0, where ε∗ = max ε, subject to EAR′

, then there exists at least one

instance of the preference model compatible with the preference information

provided by the DM.

Appendix B (Computation of the relations S
N and S

P )

Given a pair of alternatives (a, b) ∈ A×A, and the following sets of constraints

EAR′

C(a, b) =

n
∑

i=1

ψi(a, b) + ε ≤ λ+M0(a, b) and gi(b) − gi(a) ≥ vi(a) − δMi(a, b),

n
∑

i=0

Mi(a, b) ≤ n, Mi(a, b) ∈ {0, 1}, i = 0, . . . , n



































ESN

(a, b)

and

EAR′

C(a, b) =

n
∑

i=1

ψi(a, b) ≥ λ and gi(b) − gi(a) + ε ≤ vi(a), i = 1, . . . , n















ESP

(a, b)

we have the following:

• aSNb iff ESN

(a, b) is infeasible or εN (a, b) ≤ 0, where εN (a, b) = max ε

subject to ESN

(a, b),

• aSP b iff ESP

(a, b) is feasible and εP (a, b) > 0, where εP (a, b) = max ε

subject to ESP

(a, b).


