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Abstract

The paper deals with two important issues of Multiple Criteria Decision Aiding: interaction between
criteria and hierarchical structure of criteria. To handle interactions, we apply the Choquet integral
as a preference model, and to handle the hierarchy of criteria, we apply the recently proposed
methodology called Multiple Criteria Hierarchy Process. In addition to dealing with the above
issues, we suppose that the preference information provided by the Decision Maker is indirect and
has the form of pairwise comparisons of some criteria and some alternatives with respect to some
criteria. In consequence, many instances of the Choquet integral are usually compatible with this
preference information. These instances are identified and exploited by Robust Ordinal Regression
and Stochastic Multiobjective Acceptability Analysis. To illustrate the whole approach, we show its
application to a real world decision problem concerning the ranking of universities for a hypothetical
Decision Maker.

Keywords: Multiple Criteria Decision Aiding; Hierarchy of criteria; Choquet integral preference
model; Robust Ordinal Regression; Stochastic Multiobjective Acceptability Analysis, University
ranking.

1 Introduction

Multiple Criteria Decision Aiding (MCDA) helps Decision Makers in solving choice, ranking and
sorting problems concerning a set of alternatives evaluated on multiple criteria (see [15] for a collection
of state-of-the-art surveys on MCDA). Taking into account preferences of a particular Decision Maker
(DM), in choice problems, a subset of best alternatives has to be chosen; in ranking problems,
alternatives have to be partially or totally rank ordered from the best to the worst, while in sorting
problems each alternative has to be assigned to one or more contiguous preferentially ordered classes.
In order to deal with any of these problems, the evaluations of the alternatives on the considered
criteria have to be aggregated by a preference model, which can be either a value function [33], or

∗Department of Economics and Business, University of Catania, Corso Italia 55, 95129 Catania, Italy, e-mails:
angisil@unict.it, salvatore.corrente@unict.it, salgreco@unict.it

†University of Portsmouth, Portsmouth Business School, Centre of Operations Research and Logistics (CORL),
Richmond Building, Portland Street, Portsmouth PO1 3DE, United Kingdom
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an outranking relation [8, 17], or a set of decision rules [29, 43].
Nowadays, MCDA is facing three important methodological challenges: handling a complex structure
of criteria, dealing with interactions between criteria, and reducing the cognitive effort of the DMs
in interaction with MCDA methods. These challenges are usually handled separately, however, they
often concern the same decision problem.

In particular, with respect to the complex structure of criteria having the form of a hierarchy, the
Analytic Hierarchy Process (AHP) [41], and then the Multiple Criteria Hierarchy Process (MCHP)
[13] have been proposed. While AHP requires preference information at all levels of the hierarchy in
the form of exhaustive pairwise comparisons, and provides recommendations at the comprehensive
level only, MCHP accepts a partial preference information in form of pairwise comparisons of some
alternatives at some levels of the hierarchy, and provides recommendations at all levels.

As to the challenge of interaction, it is present when evaluation criteria are not mutually pref-
erentially independent [33]. To deal with interactions, MCDA methods use non additive integrals,
such as the Choquet integral (see [9] for the Choquet integral definition, and [24] for the applica-
tion of non additive integrals in MCDA), the Sugeno integral [46], and some of their generalizations
[26, 28, 32, 36]). The preferential independence condition has also been smoothed in multiplicative
and multilinear utility functions [33], but due to the high number of parameters that have to be
elicited from the DM, their use has not been very successful in real world applications [45].
Moreover, the interaction between criteria has been recently considered in the ELECTRE methods
[16] and in PROMETHEE methods [10]. It was also handled in artificial intelligence approaches,
by weakening the preference independence condition in GAI-networks [23], as well as UCP-networks
[7]. They are based on the concept of Generalized Additive Independence (GAI) decomposition
introduced by Fishburn [18], which permits to aggregate performances on considered criteria through
the sum of marginal utilities related to subsets of criteria. Yet another approach, recently proposed
to deal with the interaction between criteria [31] is based on an enriched additive value function that
is composed of the usual sum of marginal value functions related to each one of considered criteria
and some additional terms expressing a bonus (in case of positive interaction) or a penalty (in case
of negative interaction), incurred for interaction between some criteria. In this approach, the pairs of
criteria for which there exists a positive or negative interaction are inferred through ordinal regression
on the basis of preference information given by the DM on some reference alternatives.

The aforementioned aspects of hierarchy and interaction of criteria have been jointly analyzed
and described in the hierarchical Choquet integral preference model [5]. Other studies devoted to
modeling the hierarchy of criteria within the Choquet integral preference model can be found in
[19, 20, 21, 22, 39, 40, 47]. Let us remark that their multi-step Choquet integral is different from our
approach, since it requires the definition of a capacity at each node of the hierarchy of criteria. Con-
sequently, their method considers Choquet integrals resulting from aggregation of Choquet integrals
at the subsequent level of the hierarchy, which is not the case of our approach.

As to the challenge of reducing the cognitive effort of the DM, one can observe the trend of
abandoning direct elicitation of preference model parameters in favor of an indirect elicitation of
preferences. In the direct elicitation, the DM is expected to provide values of all parameters of the
considered preference model, while in the indirect elicitation, the DM is expected to provide prefer-
ence information in the form of pairwise comparisons between some alternatives or criteria. There
are known two MCDA methodologies based on the indirect elicitation of preferences, which explore
the whole set of preference model parameters compatible with the preference information provided
by the DM. These are the Robust Ordinal Regression (ROR) (see [30] for the paper introducing
ROR, and [11, 12] for surveys) and the Stochastic Multiobjective Acceptability Analysis (SMAA)
(see [34] for the paper introducing SMAA, and [48] for a survey).

In this paper, we undertake all these three challenges together, combining the use of MCHP with
the Choquet integral preference model on one hand and application of ROR and SMAA on the other
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hand. This combination is not straightforward, however, because it does not consist in chaining
these three methods as they are, but in joint application of all of them, which needs some non-trivial
adaptations. In this way, we extend the study presented in [5] by considering two new aspects:

• application of ROR to identify all instances of the Choquet integral preference model being
compatible with the preference information provided by the DM; due to hierarchical structure
of criteria, the DM can express preference information at a particular level of the hierarchical
decomposition of the problem; in exchange, ROR provides robust recommendation in terms of
necessary and possible preference relations at all levels of the hierarchy of criteria;

• application of SMAA to compute the frequency with which an alternative gets a particular
position in the recommended ranking or the frequency with which an alternative is preferred
to another one, at all levels of the hierarchy of criteria.

Let us observe that the methodology presented in this paper is not just a simple sum of the afore-
mentioned three approaches, because MCHP requires that the Choquet integral preference model,
SMAA and ROR are applied in all nodes of the hierarchy of criteria in a different way than in case of
a flat structure of criteria; the hierarchy requires a coordination of calculations in particular nodes,
and moreover, the preference information does not need to be given in all nodes. Moreover, the
approach is really adaptive with respect to the complexity of the decision problem considered, since
on one hand, it permits decomposition of complex problems due to hierarchical structure of criteria
and, on the other hand, it permits to adapt the Choquet integral from 1-additive form (linear) to
k-additive form, depending on the preference information provided by the DM. Another aspect that
we would like to underline here and that will be clear in the next sections is that the extension of
the MCHP to the Choquet integral preference model does not require more parameters than the
application of the Choquet integral preference model in case of a flat structure of criteria. Indeed,
the application of the Choquet integral in case of criteria structured in a hierarchical way requires
only the definition of a capacity on the set of elementary criteria and not of a capacity on each node
of the hierarchy. Indeed, the capacities on the different nodes of the hierarchy can be easily obtained
by the capacity defined on the elementary criteria only.
The highlights characterizing the approach presented in this paper, are summarized briefly in the
following paragraphs.

At the input, the DM is asked to provide the following preference information:

• comparisons related to importance and interaction of macro-criteria as well as between some
elementary criteria, not necessarily belonging to the same macro-criterion;

• preference comparisons between alternatives at a comprehensive level as well as considering
only a macro-criterion and, therefore, a particular aspect of the problem at hand.

At the output, the DM gets, we get the following results again with respect to each node of the
hierarchy as well as at a comprehensive level:

• necessary and possible preference relations resulting from NAROR;

• all the probabilistic indices supplied by SMAA applied to the k-additive Choquet integral
preference model;

• the rankings of the alternatives, by applying the Choquet integral preference model assuming
the barycenter of the capacities compatible with the preference information provided by the
DM.
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The paper is organized as follows. In Section 2, we introduce some basic concepts relative to the
Choquet integral preference model, MCHP, hierarchical Choquet integral preference model, ROR
and SMAA. In Section 3, the proposed methodology, combining SMAA and ROR applied to the
hierarchical Choquet integral preference model, is presented. A real world multicriteria problem,
related to the ranking of universities, illustrates the considered methodology in Section 4. Conclusions
are drawn and some future directions of research are provided in Section 5.

2 Basic concepts

In this section, we introduce some basic concepts used further in the paper. In subsection 2.1, we
present the Choquet integral preference model. In subsections 2.2 and 2.3, we recall ROR applied to
the Choquet integral (called NAROR), and SMAA, respectively, while in subsection 2.4, a descrip-
tion of the hierarchical Choquet integral preference model is presented together with an example
(subsection 2.4.1).

2.1 The Choquet integral, preference model

Let G = {g1, . . . , gn} be the set of evaluation criteria and 2G the set of all subsets of G; a capacity
on 2G is a function µ : 2G → [0, 1] such that µ(∅) = 0, µ(G) = 1 (normalization constraints) and
µ(T ) ≤ µ(R) for all T ⊆ R ⊆ G (monotonicity constraints). The Möbius representation of the
capacity µ is the function m : 2G → R, such that, for all R ⊆ G,

µ(R) =
∑

T⊆R

m(T ). (1)

Let also A be a set of alternatives. Given an alternative a ∈ A and a capacity µ, the Choquet integral
of a is defined as

Cµ(a) =
n

∑

i=1

[

g(i)(a) − g(i−1) (a)
]

µ (Ni) ,

where (·) stands for a permutation of the indices of criteria, such that 0 = g(0)(a) = g(1) (a) ≤ . . . ≤
g(n) (a) , with Ni = {(i), ...., (n)}, i = 1, .., n. In the following, we suppose that all criteria are of the
gain type.
Using the Möbius representation of µ, and without reordering the criteria, the Choquet integral of a
is therefore redefined as

Cµ(a) =
∑

T⊆G

m(T ) min
i∈T

gi (a) .

Since in case of interacting criteria the importance of the criterion i, as well as its interaction with
other criteria, do not depend on its importance as singleton only, but also on its contribution to all
coalitions of criteria, we recall the Shapley value [42]

ϕ ({i}) =
∑

T⊆G: i/∈T

(|G− T | − 1)!|T |!

|G|!
[µ(T ∪ {i}) − µ(T )] , (2)

and the interaction index [38]

ϕ ({i, j}) =
∑

T⊆G: i,j /∈T

(|G− T | − 2)!|T |!

(|G| − 1)!
[µ(T ∪ {i, j}) − µ(T ∪ {i}) − µ(T ∪ {j}) + µ(T )] . (3)
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Using the Möbius representation of capacity µ, equations (2) and (3) can be formulated as follows
[27]

ϕ({i}) =
∑

A⊆G: i∈A

m(A)

|A|
(4)

and

ϕ({i, j}) =
∑

{i,j}⊆A⊆G

m(A)

|A| − 1
. (5)

A direct application of the Choquet integral preference model implies the elicitation of 2|G| − 2
parameters µ(T ) (one for each subset T ⊆ G, apart from T = ∅ and T = G, since µ(∅) = 0 and
µ(G) = 1). As the inference of all these parameters is cognitively hard, the concept of q-additive
capacity has been defined in [25]. A capacity is q-additive if m(T ) = 0 for all T ⊆ G, such that
|T | > q. In real world applications, it is enough considering 2-additive capacities only. The use of a
2-additive capacity involves knowledge of n+

(

n
2

)

parameters only: a value m({i}) for each criterion
i and a value m({i, j}) for each couple of criteria {i, j}. Considering the Möbius representation m
of a 2-additive capacity µ, normalization and monotonicity constraints have the following form

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)











m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅,

while the Choquet integral of a ∈ A can be computed as

Cµ(a) =
∑

i∈G

m ({i}) gi (a) +
∑

{i,j}⊆G

m ({i, j}) min{gi (a) , gj (a)}. (6)

Equations (4) and (5) expressing the Shapley value and the interaction index can be, therefore,
rewritten in the following way:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
, (7)

ϕ ({i, j}) = m ({i, j}) . (8)

2.2 Non Additive Robust Ordinal Regression (NAROR)

NAROR [6] belongs to the family of ROR methods (see [11, 12, 30]). In NAROR, the DM is asked to
give the following type of preference information on a subset A∗ ⊆ A of reference alternatives (s)he
knows well:

• a is preferred to b, denoted by a ≻ b (translated to the constraint Cµ(a) ≥ Cµ(b) + ε);

• a is indifferent to b, denoted by a ∼ b (Cµ(a) = Cµ(b));
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• a is preferred to b more than c is preferred to d, denoted by (a, b) ≻∗ (c, d) (Cµ(a) − Cµ(b) ≥
Cµ(c) − Cµ(d) + ε and Cµ(c) − Cµ(d) ≥ ε);

• the intensity of preference between a and b is the same of the intensity of preference between
c and d, denoted by (a, b) ∼∗ (c, d) (Cµ(a) − Cµ(b) = Cµ(c) − Cµ(d)),

where a, b, c, d ∈ A∗.
Moreover, differently from other ROR methods, in NAROR the DM can provide also some preference
information on criteria i, j, l, k ∈ G, such as:

• criterion i is more important than criterion j, denoted by gi ≻ gj (translated to the constraint
ϕ({i}) ≥ ϕ({j}) + ε);

• criteria i and j are indifferent, denoted by gi ∼ gj (ϕ({i}) = ϕ({j}));

• criteria i and j are positively (negatively) interacting (ϕ({i, j}) ≥ ε (≤ −ε));

• i is preferred to j more than l is preferred to k, denoted by (gi, gj) ≻
∗ (gl, gk) (ϕ({i})−ϕ({j}) ≥

ϕ({l}) − ϕ({k}) + ε and ϕ({l}) − ϕ({k}) ≥ ε);

• the difference of importance between i and j is the same as the difference of importance between
l and k, denoted by(gi, gj) ∼

∗ (gl, gk) (ϕ({i}) − ϕ({j}) = ϕ({l}) − ϕ({k})).

In the above constraints, ε is an auxiliary variable used to convert the strict inequalities into weak
inequalities; for example Cµ(a) ≥ Cµ(b) + ε is the translation of Cµ(a) > Cµ(b).

At the output of NAROR, two preference relations, one necessary %N and another possible %P ,
are presented to the DM:

a %N b iff Cµ(a) ≥ Cµ(b) for all compatible capacities,

a %P b iff Cµ(a) ≥ Cµ(b) for at least one compatible capacity ,

where a compatible capacity is a set of Möbius measures for which the preference information pro-
vided by the DM is restored.

Denoting by EDM the set of above constraints translating the DM’s preference information together
with the monotonicity and normalization constraints 1c) and 2c), the existence of a compatible
capacity is checked by solving the following linear programming problem:

ε∗ = max ε, subject to EDM .

If EDM is feasible and ε∗ > 0, then there exists at least one compatible capacity, otherwise there
exists some inconsistency in the preferences provided by the DM that could be identified by using
one of the methods presented in [37].

The two following sets of constraints,

Cµ(b) ≥ Cµ(a) + ε,

EDM

}

EN(a, b),
Cµ(a) ≥ Cµ(b)

EDM

}

EP (a, b)

are used to compute the necessary and the possible preference relation between alternatives a and
b, a, b ∈ A. In particular, the necessary preference relation holds between a and b if EN(a, b) is
infeasible or εN ≤ 0, where εN = max ε, subject to EN(a, b). Analogously, the possible preference
relation holds between a and b if EP (a, b) is feasible and εP > 0, where εP = max ε, subject to
EP (a, b).
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2.3 Stochastic Multiobjective Acceptability Analysis (SMAA)

SMAA [34, 35] is a family of MCDA methods which take into account uncertainty or imprecision
on the evaluations and preference model parameters. In this section we describe SMAA-2 [35], since
our proposed methodology also regards ranking problems.
The most frequently used value function in SMAA-2 is the linear one

U(ak, w) =
n

∑

i=1

wigi(ak)

where w ∈ W = {(w1, . . . , wn) ∈ R
n : wi ≥ 0 and

n
∑

i=1

wi = 1}. In SMAA methods, the indirect

preference information is composed of two probability distributions, fχ and fW , defined on the
evaluation space χ and on the weight space W , respectively.
Defining the rank function

rank(k, ξ, w) = 1 +
∑

h 6=k

ρ (U(ξh, w) > U(ξk, w)) ,

(where ρ(false) = 0 and ρ(true) = 1) that, for all ak ∈ A, ξ ∈ χ and w ∈ W gives the rank position
of alternative ak, SMAA-2 computes the set of weights of criteria for which alternative ak assumes
rank r = 1, 2, . . . , n, as follows:

W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r} .

The following further indices are computed in SMAA-2:

• The rank acceptability index that measures the variety of different parameters compatible with
the DM’s preference information giving to the alternative ak the rank r:

brk =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ;

brk gives the probability that alternative ak has rank r, and it is within the range [0, 1].

• The central weight vector that describes the preferences of a typical DM giving to ak the best
position:

wc
k =

1

b1k

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(ξ)

fW (w)w dw dξ;

• The pairwise winning index that is defined as the frequency that an alternative ah is preferred
to an alternative ak in the space of weight vectors:

phk =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξh,w)>u(ξk,w)

fχ(ξ)dξ dw.

From a computational point of view, the multidimensional integrals defining the considered indices are
estimated by using the Monte Carlo method. Let us note that, recently, the potentialities of SMAA
and the Choquet integral preference model have been combined in [3] and further investigated in [4].
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2.4 Multiple Criteria Hierarchy Process (MCHP) and the Choquet in-
tegral preference model

In MCHP, the evaluation criteria are not all considered at the same level but they are structured in
a hierarchical way. This means that one considers a root criterion (the comprehensive objective) and
a set of subcriteria branching successively, as shown in Figure 1.

Figure 1: Example of a hierarchy of criteria. G0 is the root criterion, G1 and G2 are the first level
subcriteria while 10 elementary criteria are in the last level of the hierarchy.

G0

G1 G2

G(1,1) G(1,2) G(2,1) G(2,2) G(2,3)

g(1,1,1) g(1,1,2) g(1,2,1) g(1,2,2) g(2,1,1) g(2,1,2) g(2,2,1) g(2,2,2) g(2,3,1) g(2,3,2)

The following notation will be used in the paper:

• G denotes the set of all criteria at all considered levels, while IG is the set of indices of all
criteria in the hierarchy;

• EL is the set of indices of the elementary criteria, that is criteria located at the last level of
the hierarchy and on which the alternatives are evaluated (in Figure 1,
EL = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 2)});

• Gr is a generic criterion in the hierarchy, while G(r,1), . . . , G(r,n(r)) are the subcriteria of criterion
Gr in the subsequent level (in Figure 1, G(2,1), G(2,2) and G(2,3) are the subcriteria of G2 in the
subsequent level);

• E(Gr) is the set of indices of elementary criteria descending from Gr (in Figure 1,
E(G1) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)});

• Given F ⊆ G, E(F) = ∪Gr∈FE(Gr) is the set of all elementary criteria descending from at
least one criterion in F (in Figure 1, considering F =

{

G(1,1), G(2,3)

}

, then
E(F) = {(1, 1, 1), (1, 1, 2), (2, 3, 1), (2, 3, 2)});

• Gk
r

is the set of subcriteria of Gr located at level k (in Figure 1, G2
1

=
{

G(1,1), G(1,2)

}

, while
G3
1

=
{

g(1,1,1), g(1,1,2), g(1,2,1), g(1,2,2)
}

).

Given a capacity µ defined on the power set of EL, a criterion Gr with r ∈ IG ∩ N
h (that is, Gr

is a criterion located at level h of the hierarchy) and k = h+ 1, . . . , l, where l is the number of levels
in the hierarchy tree (for example, l = 3 in Figure 1), we can define a capacity on the power set of
Gk
r

µk
r

: 2Gk
r → [0, 1] (9)

such that
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µk
r
(F) =

µ (E (F))

µ (E (Gr))
(10)

for all F ⊆ Gk
r
.

According to equation (10), the capacity µk
r

can be written in terms of the capacity µ defined on
the power set of EL.

Considering criterion Gr, r ∈ IG \EL at any but the last level of the hierarchy, and the capacity
µ defined on the power set of EL, the Choquet integral of alternative a ∈ A on criterion Gr can be
computed as

Cµr
(a) =

Cµ(ar)

µ(E(Gr))
(11)

where ar is a fictitious alternative having the same evaluations as a on elementary criteria from E(Gr)
and null evaluation on elementary criteria from outside E(Gr), i.e., gt(ar) = gt(a) if t ∈ E(Gr) and
gt(ar) = 0 if t /∈ E(Gr).

Starting from equations (2) and (3), and considering a criterion Gr, r ∈ IG \ {EL}, we can define
the Shapley value of criterion G(r,w) and the interaction index between criteria G(r,w1) and G(r,w2),
with G(r,w), G(r,w1), G(r,w2) ∈ Gk

r
, as follows:

ϕk
r

({

G(r,w)

})

=
∑

T⊆Gk
r \{G(r,w)}

(

|Gk
r
\ T | − 1

)

!|T |!

|Gk
r
|!

[

µk
r

(

T ∪
{

G(r,w)

})

− µk
r

(T )
]

, (12)

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

T⊆Gk
r \{G(r,w1)

, G(r,w2)}

(

|Gk
r
\ T | − 2

)

!|T |!

(|Gk
r
| − 1)!

. (13)

As for the capacity µ defined on the power set of G, we can define analogously the Möbius represen-
tation mk

r
: 2Gk

r → [0, 1] of the capacity µk
r
, such that

µk
r

(F) =
∑

T⊆F

mk
r

(T ) (14)

for all F ⊆ Gk
r
.

By considering the Möbius representation mk
r

of the capacity µk
r
, equations (12) and (13) can be

rewritten as follows:

ϕk
r

({

G(r,w)

})

=
∑

F⊆Gk
r : G(r,w)∈F

mk
r

(F)

|F|
(15)

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

F⊆Gk
r : G(r,w1)

, G(r,w2)
∈F

mk
r

(F)

|F| − 1
(16)

where G(r,w), G(r,w1), G(r,w2) ∈ Gk
r
.

The Möbius transformation mk
r

of the capacity µk
r

can be written in terms of the Möbius trans-
formation m of the capacity µ, as stated in the following proposition.

Proposition 2.1. Let µ be, a capacity defined on 2EL, and m its Möbius representation. Let Gr ∈ G,
r ∈ IG \ {EL} with µk

r
being a capacity defined on 2Gk

r and mk
r
its Möbius representation; then for all

F =
{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r
,
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mk
r

(F) = mk
r

({

G(r,w1), . . . , G(r,wα)

})

=

∑

T1⊆E(G(r,w1)), T1 6=∅
···

Tα⊆E(G(r,wα)), Tα 6=∅

m ({T1, . . . , Tα})

µ (E (Gr))
.

Proof. See Appendix.

Example 2.1. Let F =
{

G(1,1)

}

⊆ G2
1
be, as shown in Figure 1; considering the Möbius representa-

tion m2
1
of the capacity µ2

1
, we have that

m2
1

({

G(1,1)

})

=

∑

T1⊆E(G(1,1)), T1 6=∅

m({T1})

µ (E (G1))
=

=
1

µ (E (G1))

[

m
({

g(1,1,1)
})

+ m
({

g(1,1,2)
})

+ m
({

g(1,1,1), g(1,1,2)
})]

.

Analogously, considering set F =
{

G(1,1), G(1,2)

}

= G2
1
, we have that

m2
1

({

G(1,1), G(1,2)

})

=
∑

T1⊆E(G(1,1)), T1 6=∅

T2⊆E(G(1,2)), T2 6=∅

m ({T1, T2}) =

=
1

µ (E (G1))

[

m
({

g(1,1,1), g(1,2,1)
})

+ m
({

g(1,1,1), g(1,2,2)
})

+ m
({

g(1,1,2), g(1,2,1)
})

+

+m
({

g(1,1,2), g(1,2,2)
})

+ m
({

g(1,1,1), g(1,1,2), g(1,2,1)+
})

+ m
({

g(1,1,1), g(1,1,2), g(1,2,2)
})

+

+m
({

g(1,1,1), g(1,2,1), g(1,2,2)
})

+ m
({

g(1,1,2), g(1,2,1), g(1,2,2)
})]

.

As mentioned before, 2-additive capacities are in general sufficient for practical use. For this
reason, in the last part of this section we concentrate on the application of MCHP to the 2-additive
Choquet integral preference model. First, we provide a proposition stating that if µ is a q-additive
capacity, then µk

r
is also q-additive for each subcriterion Gr in the hierarchy, while the second propo-

sition expresses the Shapley value and the interaction index in case of 2-additive capacities.

Proposition 2.2. Let µ be a q-additive capacity defined on 2EL, then µk
r
is a q-additive capacity

defined on 2Gk
r , for all Gr ∈ G with r ∈ IG \ {EL}.

Proof. See Appendix.

Proposition 2.3. Let µ be a 2-additive capacity defined on 2EL and G(r,w), G(r,w1), G(r,w2) ∈ Gk
r
, with

r ∈ IG \ {EL}, then:

1.

ϕk
r

({

G(r,w)

})

=













∑

t∈E(G(r,w))

m (gt) +
∑

t1,t2∈E(G(r,w))

m (gt1 , gt2) +
∑

t1∈E(G(r,w))
t2∈E(Gk

r \{G(r,w)})

m(gt1 , gt2)

2













1

µ(E(Gr))
,

(17)
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Figure 2: Hierarchy of criteria for evaluation of projects.

2.

ϕk
r

({

G(r,w1), G(r,w2)

})

=













∑

t1∈E(G(r,w1))
t2∈E(G(r,w2))

m(gt1 , gt2)













1

µ(E(Gr))
. (18)

Proof. See Appendix.

It is meaningful observing in equation (17) that the importance of a criterion G(r,w) depends on
which criterion it is descending from. This means that if G(r,w) is a subcriterion of Gr and, in turn,
Gr is a subcriterion of Gs, then G(r,w) will get importance ϕk

r
(G(r,w)), because it is subcriterion of

Gr, and importance ϕk
s
(G(r,w)), because it is also subcriterion of Gs. This is due to the fact that

when computing ϕk
s
(G(r,w)) one should take into account a greater number of interactions than when

computing ϕk
r
(G(r,w)).

2.4.1 Example

In this section, we provide a simple example to explain how to apply the hierarchical Choquet
integral preference model, and to highlight some characteristics of the method. Let us suppose
that four alternative projects are evaluated with respect to two macro-criteria, Environmental (En)
and Economic (Ec), and that each of these macro-criteria is composed of two elementary criteria.
In particular, Soil Sustainability (SoSu) and Water Sustainability (WaSu) are elementary criteria
of En while Expected Earnings (ExEa) and Financial Feasibility (FiFe) are elementary criteria of
Ec. The hierarchy of criteria is shown in Figure 2. The general notation concerning set of criteria
G =

{

G1, G2, g(1,1), g(1,2), g(2,1), g(2,2)
}

corresponds now to G = {En,Ec,SoSu,WaSu,ExEa,FiFe}. All
criteria are defined on a common gain scale 10-30. The evaluations of the four projects with respect
to the considered elementary criteria are shown in Table 1(a).

For the sake of this example, we assume that Möbius parameters of the Choquet integral are
known (see Table 1(b)). They have been obtained by ordinal regression technique which will be
explained in the next section. Values of the Choquet integral for the four projects can now be
computed with respect to the totality of criteria (equation 6), as well as with respect to each of the
two considered macro-criteria (equation 11). These values are given in Table 2. At the same time,
one can also compute the Shapley values of different criteria (see Table 3).

Looking at Table 2, we can observe that even if project a is better than project b with respect to
En and Ec (Cµ1

(a) > Cµ1
(b) and Cµ2

(a) > Cµ2
(b)), b is preferred to a with respect to the totality of

criteria (Cµ(b) > Cµ(a)). An analogous situation can be observed for projects c and d with c being
preferred to d on the two macro-criteria and d being preferred to c with respect to the totality of
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Table 1: Evaluations of projects and Möbius parameters

(a) Evaluations of projects

En Ec
Projects SoSu WaSu ExEa FiFe

a 17 14 13 18
b 14 15 18 15
c 11 21 11 20
d 15 14 15 14

(b) Möbius parameters

m(SoSu) 0.3793
m(WaSu) 0.1724
m(ExEa) 0.0507
m(FiFe) 0.1562

m(SoSu, WaSu) −0.1724
m(SoSu, ExEa) −0.0507
m(SoSu, FiFe) −0.1562
m(WaSu, ExEa) 0.6168
m(WaSu, FiFe) 0.0039
m(ExEa, FiFe) 0

Table 2: Values of the Choquet integral for the four projects

(a) At the comprehensive level

G1 (En) G2 (Ec) Choquet integral values
SoSu WaSu ExEa FiFe Cµ(·)

a 17 14 13 18 Cµ(a) = 14.67
b 14 15 18 15 Cµ(b) = 15.15
c 11 21 11 20 Cµ(c) = 14.16
d 15 14 15 14 Cµ(d) = 14.37

(b) At the level of macro-criteria

G1 (En) G2 (Ec) Choquet integral values
SoSu WaSu ExEa FiFe Cµ(·)/µ(E(Gr))

a1 17 14 0 0 Cµ1
(a) = 17

a2 0 0 13 18 Cµ2
(a) = 16.77

b1 14 15 0 0 Cµ1
(b) = 14.45

b2 0 0 18 15 Cµ2
(b) = 15.73

c1 11 21 0 0 Cµ1
(c) = 15.54

c2 0 0 11 20 Cµ2
(c) = 17.79

d1 15 14 0 0 Cµ1
(d) = 15

d2 0 0 15 14 Cµ2
(d) = 14.24

criteria. Even if this could seem an unlikely situation at a first sight, it is justifiable if we observe
that in computing the Choquet integral of a project with respect to En (analogously with respect to
Ec), we take into account only the interactions between the elementary criteria of En (Ec), while in
computing the Choquet integral of a project with respect to the totality of criteria, we consider the
interactions between all four elementary criteria.

Table 3: Shapley values

(a) Shapley values of each elementary criterion with
respect to the considered macro-criterion

En Ec
SoSu WaSu ExEa FiFe

ϕ2
r
(G(r,w)) 0.7727 0.2272 0.2450 0.7549

(b) Shapley values of
each elementary crite-
rion with respect to the
totality of criteria

ϕ2
0
(G(r,w))

SoSu 0.1896
WaSu 0.3965
ExEa 0.3337
FiFe 0.080

Looking at Table 3, one can observe another phenomenon characteristic for the hierarchical
Choquet integral preference model. Indeed, SoSu is more important than WaSu when they are
considered as subcriteria of En, while the opposite is true when they are considered as subcriteria of
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the root criterion G0. Analogous situation could be observed for the elementary criteria ExEa and
FiFe, where FiFe is more important than ExEa when they are considered as subcriteria of Ec, while
the opposite is true when they are considered as elementary criteria of the root criterion G0. Also
this phenomenon could seem unlikely, but this can be explained as before. In fact, when computing
the importance of SoSu with respect to En one has to take into account only the interaction between
SoSu and WaSu, while computing the importance of SoSu with respect to the root criterion G0, one
has to take into account its interaction with WaSu and the two elementary criteria of Ec.

3 Robust Ordinal Regression (ROR) and Stochastic Multi-

objective Acceptability Analysis (SMAA) applied to the

hierarchical Choquet integral preference model

According to Section 2.4, to apply the hierarchical Choquet integral preference model, one has to
define the Möbius representation of a capacity defined on the power set of EL, that is m({gt})
for each elementary criterion gt, and m({gt1 , gt2}) for each couple of elementary criteria {gt1 , gt2}.
These values will be calculated using an ordinal regression technique from some indirect preference
information. Below, we explain this technique in detail.

Given a criterion Gr, r ∈ IG \ {EL}, the DM is requested to provide the following type of
preference information:

• a is preferred to b on criterion Gr, denoted by a ≻r b (translated to the constraint Cµr
(a) ≥

Cµr
(b) + ε);

• a is indifferent to b on criterion Gr, denoted by a ∼r b (Cµr
(a) = Cµr

(b));

• on criterion Gr, a is preferred to b more than c is preferred to d, denoted by (a, b) ≻∗
r

(c, d),
(Cµr

(a) − Cµr
(b) ≥ Cµr

(c) − Cµr
(d) + ε and Cµr

(c) − Cµr
(d) ≥ ε);

• on criterion Gr the intensity of preference between a and b is the same as the intensity of
preference between c and d, denoted by (a, b) ∼∗

r
(c, d) (Cµr

(a) − Cµr
(b) = Cµr

(c) − Cµr
(d)).

Considering criteria Gr1
, Gr2

, Gr3
, Gr4

, with r1, r2, r3, r4 ∈ Gk
r
, the DM can provide the following

preference information:

• criterion Gr1
is more important than criterion Gr2

, denoted by Gr1
≻ Gr2

(translated to the
constraint ϕk

r
({Gr1

}) ≥ ϕk
r

({Gr2
}) + ε);

• criteria Gr1
and Gr2

are equally important, denoted by Gr1
∼ Gr2

(ϕk
r

({Gr1
}) = ϕk

r
({Gr2

}));

• criteria Gr1
and Gr2

are positively interacting (ϕk
r

({Gr1
, Gr2

}) ≥ ε);

• criteria Gr1
and Gr2

are negatively interacting (ϕk
r

({Gr1
, Gr2

}) ≤ −ε);

• the interaction between criteria Gr1
and Gr2

is greater than the interaction between criteria
Gr3

and Gr4

– if there is positive interaction between both pairs of criteria, then the constraint translating
this preference are ϕk

r
({Gr1

, Gr2
}) − ϕk

r
({Gr3

, Gr4
}) ≥ ε and ϕk

r
({Gr3

, Gr4
}) ≥ ε

– if there is negative interaction between both pairs of criteria, then the constraint translat-
ing this preference are ϕk

r
({Gr1

, Gr2
})−ϕk

r
({Gr3

, Gr4
}) ≤ −ε and ϕk

r
({Gr3

, Gr4
}) ≤ −ε;
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• Gr1
is preferred to Gr2

more than Gr3
is preferred to Gr4

, denoted by (Gr1
, Gr2

) ≻∗ (Gr3
, Gr4

)
(

ϕk
r

({Gr1
}) − ϕk

r
({Gr2

}) ≥ ϕk
r

({Gr3
}) − ϕk

r
({Gr4

}) + ε and ϕk
r

({Gr3
}) − ϕk

r
({Gr4

}) ≥ ε
)

;

• the difference of importance between Gr1
and Gr2

is the same of the difference of impor-
tance between Gr3

and Gr4
, denoted by (Gr1

, Gr2
) ∼∗ (Gr3

, Gr4
) (ϕk

r
({Gr1

}) − ϕk
r

({Gr2
}) =

ϕk
r

({Gr3
}) − ϕk

r
({Gr4

})).

Similarly to Section 2.2, ε is an auxiliary variable used to convert the strict inequalities into
weak ones. Moreover, like in Section 2.2, EDM denotes the set of constraints translating the DM’s
preference information together with the monotonicity and normalization constraints.
To check if there exists at least one compatible capacity, one has to solve the following linear pro-
gramming problem:

ε∗ = max ε, subject to EDM .

If EDM is feasible, and ε∗ > 0 then there exists at least one compatible capacity, otherwise some
inconsistency arised, which has to be identified [37].
Considering criterion Gr located at a not last level of the hierarchy, and the two following sets of
constraints,

Cµr
(b) ≥ Cµr

(a) + ε,

EDM .

}

EN
r

(a, b),
Cµr

(a) ≥ Cµr
(b)

EDM

}

EP
r

(a, b)

the necessary preference relation with respect to criterion Gr holds for alternatives a and b if EN
r

(a, b)
is infeasible or εN

r
≤ 0, where εN

r
= max ε, subject to EN

r
(a, b). Analogously, the possible preference

relation with respect to criterion Gr holds for alternatives a and b if EP
r

(a, b) is feasible and εP
r
> 0,

where εP
r

= max ε, subject to EP
r

(a, b).
In practice, it is very likely that, given an available preference information, a is possibly preferred

to b and b is possibly preferred to a. Nevertheless, the number of compatible capacities for which
a is preferred to b could be very different from the number of compatible capacities for which b is
preferred to a. For this reason, in order to estimate how good an alternative is compared to others
and how often it is preferred over another alternative, we propose to apply the SMAA methodology.
This technique applied to the hierarchical Choquet integral preference model is explained in detail
below.

The set of linear constraints in EDM defines a convex set of Möbius parameters. To explore
this set of parameters the Hit-And-Run (HAR) method can be applied [44, 49, 50]. HAR samples
iteratively a set of Möbius parameters satisfying EDM until a stopping condition is met. For each
sampled set of Möbius parameters and a given criterion Gr, one can compute values of the Choquet
integral for all considered alternatives. These values rank the alternatives with respect to Gr. Having
as many rankings as the samples, one can compute the indices typical to the SMAA methodology
recalled in Section 2.2:

• the rank acceptability index blk,r, being the frequency with which alternative ak gets position l
in the ranking obtained with respect to criterion Gr,

• the pairwise winning index pr(a, b), giving the frequency of the preference of a over b on criterion
Gr.

Moreover, by using the rank acceptability indices, other two indices recently introduced in [2] can
be computed:
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• the downward cumulative rank acceptability index b≤l
k,r, being the frequency that alternative ak

will get a position not greater than l on criterion Gr,

b≤l
k,r =

l
∑

s=1

bsk,r,

• the upward cumulative rank acceptability index b≥l
k,r, being the frequency that alternative ak

will get a position not lower than l on criterion Gr,

b≥l
k,r =

n
∑

s=l

bsk,r.

It is worth stressing that at the comprehensive level, represented by criterion G0, we also get the
necessary and possible preference relations on one hand, and the SMAA indices on the other hand.

4 An illustrative real world decision making problem

In this section, we apply the proposed methodology to a real world decision making problem [1].
220 European universities from 30 countries have been evaluated on a 1-5 scale (1-weak, 2-below
average, 3-average, 4-good, 5-very good) with respect to criteria structured in a hierarchical way,
as shown in Figure 3. The three macro-criteria are Teaching & Learning (TL), Research (R) and
Knowledge Transfer (KT), and they are further decomposed to more detailed elementary criteria.
For macro-criteron TL, these are:

• Masters Graduation Rate (MGR),

• Masters Graduating on Time (MGOT).

Macro-criterion R is decomposed to:

• Number of Research Publications (NRP),

• Citation Rate (CR),

• Proportion of Top Cited Publications (PTCT),

and macro-criterion KT is decomposed to:

• Number of Patents Awarded (NPA),

• Number of Spin-Offs (NSO),

• Research and Knowledge Transfer Revenues (RKTR).

Description of the elementary criteria is given in Table 4.
Many of these universities dominate1 the others and, at the same time, many universities are

dominated by others. For this reason, following a procedure well known from the evolutionary mul-
tiobjective optimization method, called NSGA-II [14], we ordered the universities in nondominated
fronts. We put in the first front all nondominated universities; then, after removing these universities

1An alternative a dominates an alternative b with respect to criteria {g1, . . . , gn} if, supposing that all criteria are
of the gain type, gi(a) ≥ gi(b) for all i = 1, . . . , n, and there exists at least one j ∈ {1, . . . , n}, such that gj(a) > gj(b).
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Figure 3: Hierarchical structure of criteria considered in the case study

G(0)

TL
G1

MGR
g(1,1)

MGOT
g(1,2)

R
G2

NRP
g(2,1)

CR
g(2,2)

PTCP
g(2,3)

KT
G3

NPA
g(3,1)

NSO
g(3,2)

RKTR
g(3,3)

Table 4: Description of the elementary criteria

Elementary criterion Description

Masters Graduation Rate (MGR) The percentage of new entrants that successfully completed their master programs

Masters Graduating on Time (MGOT) The percentage of graduates that graduated within the time expected (normative time) for their masters programs

Number of Research Publications (NRP) The number of research publications indexed in the Web of Science database, where at least

one author is affiliated to the university (relative to the number of students)

Citation Rate (CR) The average number of times that the university department’s research publications (over the period 2008-2011)

get cited in other research, adjusted (normalized) at the global level to take into account differences in

publication years and to allow for differences

Proportion of Top Cited Publications (PTCP) The proportion of the university’s research publications that, compared to other publications in the same field

and in the same year, belong to the top 10% most frequently cited

Number of Patents Awarded (NPA) The number of patents assigned to (inventors working in) the university (over the period 2001-2010)

Number of Spin-Offs (NSO) The number of spin-offs (i.e. firms established on the basis of a formal knowledge transfer arrangement

between the institution and the firm) recently created by the institution (per 1,000 fte academic staff)

Research and Knowledge Transfer Revenues (RKTR) Research revenues and knowledge transfer revenues from private sources (incl. not-for profit organizations),

excluding tuition fees. Measured in e1,000s using Purchasing Power Parities. Expressed per fte academic staff.

from the list of universities, we put in the second front the universities nondominated among the
remaining ones, and so on. In this way, the universities belonging to the same front are more ore less
similar, in the sense that there is not any strong evidence for the preference of one university over an-
other. Consequently, it is meaningful from the DM’s point of view to get a ranking recommendation
with respect to universities from the same front. In this section, we shall focus our attention on the
first nondominated front but, of course, a similar analysis could be done also with respect to another
nondominated front, or with respect to any subset of universities considered as most interesting for
a particular DM. The evaluations of the universities belonging to the first nondominated front on
the eight elementary criteria are provided in Table 5.

Table 5: Evaluations of the universities belonging to the first nondominated front on the considered
elementary criteria

G(0)

TL (G(1)) R (G(2)) KT (G(3))

University Country MGR (g(1,1)) MGOT (g(1,2)) NRP (g(2,1)) CR (g(2,2)) PTCP (g(2,3)) NPA (g(3,1)) NS0 (g(3,2)) RKTR (g(3,3))

Bocconi University (U25) Italy 5 4 2 5 5 1 1 5
Budapest U Tech & Economics (U35) Hungary 5 3 3 3 3 2 4 2
U Cordoba (U51) Spain 3 5 3 3 3 2 3 5
Tech U Denmark (U61) Denmark 4 4 5 5 5 5 5 5
Dublin Inst. Tech (U64) Ireland 2 5 2 5 5 2 4 2
U Limerick (U108) Ireland 4 5 2 5 4 4 3 5
Lomonosow Moscow State U (U117) Russia 5 5 5 2 2 2 5 5
Mondragon U (U129) Spain 4 5 2 5 5 1 5 5
Newcastle U (U136) United Kingdom 4 5 5 5 5 5 2 5
U Salamanca (U170) Spain 5 4 4 3 3 2 2 4
U Trieste (U196) Italy 5 2 5 4 4 3 3 3
WHU School of Management (U216) Germany 5 5 2 4 4 1 5 5

Suppose that the DM specifies the following preference information on the considered elementary
criteria and on the macro-criteria. Within parentheses, we write the constraints translating the
corresponding piece of preference information provided by the DM:

• R is more important than KT that, in turn, is more important than TL
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(ϕ0 (R) ≥ ϕ0 (KT ) + ε and ϕ0 (KT ) ≥ ϕ0 (TL) + ε),

• With respect to TL, MGOT is more important than MGR (ϕ2
2

({MGOT}) ≥ ϕ2
2

({MGR}) + ε),

• With respect to KT, RKTR is more important than NSO that, in turn, is more important than
NPA (ϕ2

2
({RKTR}) ≥ ϕ2

2
({NSO}) + ε and ϕ2

2
({NSO}) ≥ ϕ2

2
({NPA}) + ε),

• At a comprehensive level, PTCP is more important than RKTR that, in turn, is more important
than MGT (ϕ2

0
({PTCP}) ≥ ϕ2

0
({RKTR}) + ε and ϕ2

0
({RKTR}) ≥ ϕ2

0
({MGT}) + ε),

• TL and R are positively interacting (ϕ1
0

({TL,R}) ≥ ε),

• R and KT are positively interacting (ϕ1
0

({R,KT}) ≥ ε),

• TL and KT are positively interacting (ϕ1
0

({TL,KT}) ≥ ε),

• The interaction between R and KT is greater than the interaction between TL and KT
(ϕ1

0
({R,KT}) ≥ ϕ1

0
({TL,KT}) + ε and ϕ1

0
({TL,KT}) ≥ ε),

• The interaction between R and TL is greater than the interaction between TL and KT
(ϕ1

0
({R, TL}) ≥ ϕ1

0
({TL,KT}) + ε and ϕ1

0
({TL,KT}) ≥ ε),

• With respect to R, NRP and PTCP are positively interacting (ϕ2
2

({NRP,PTCP}) ≥ ε),

• CR and PTCP are negatively interacting (ϕ2
0

({CR,PTCP}) ≤ −ε),

• NRP and RKTR are positively interacting (ϕ2
0

({NRP,RKTR}) ≥ ε),

• NPA and NSO are negatively interacting (ϕ2
0

({NPA,NSO}) ≤ −ε),

• MGOT and NRP are positively interacting (ϕ2
0

({MGOT,NRP}) ≥ ε),

Applying NAROR at the comprehensive level, as well as on the three macro-criteria, we get the
necessary preference relations shown in Figures 4(a)-4(d). Let us observe that the blocks B1, . . . , B7 in
Figures 4(b)-4(d) are composed of universities having exactly the same evaluations on the elementary
criteria descending from the considered macro-criterion. Therefore, for example, B1 is composed of
U25 and U170 since they have exactly the same evaluations (5 and 4) on MGR and MGOT, being the
two elementary criteria descending from macro-criterion TL.

Looking at Figures 4(a)-4(d) it seems that U61 can be seen as the best university. Indeed, while
it is evident that on R and KT this university dominates all the others, at the comprehensive level
it is necessarily preferred to six out of the eleven universities. Analyzing more in detail the results
of NAROR at the intermediate level, one can observe that the preference information provided by
the DM results in many bold arrows, i.e., necessary preference relations which are not dominance
relations. For example, on TL, U51 is necessarily preferred to U35 and U196, while on R, the universities
belonging to B4 are necessarily preferred to the universities belonging to B5. Moreover, on KT, U117

is necessarily preferred to U196. Let us remind that the results we are showing concern the universities
belonging to the first nondominated front only but they are enough to observe that the application
of NAROR puts many new couples in the necessary preference relations, both at the comprehensive
level, and on particular macro-criteria, contributing in this way to a better understanding of the
decision problem by the DM.

After applying NAROR, we applied the SMAA methodology on the set of compatible value
functions at the comprehensive level and at the level of macro-criteria. At first, for each considered
university, we looked at the best and at the worst position the university could get considering the
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(a) Comprehensive level (b) Teaching and Learning
(TL); B1 = {U25, U170},
B2 = {U117, U216}, B3 =
{U108, U129, U136}

(c) Research (R);
B4 = {U25, U64, U129},
B5 = {U35, U51},
B6 = {U61, U136}

(d) Knowledge Transfer (KT); B7 =
{U35, U64}, B8 = {U129, U216}

Figure 4: Necessary preference relation at the comprehensive level, as well as with respect to macro-
criteria TL, R and KT. Dotted arrows represent the dominance relation, while bold arrows represent
necessary preference relations obtained by NAROR.
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whole set of capacities compatible with the preferences provided by the DM. We also looked at as
well as the three highest rank acceptability indices showing, therefore, which are the most likely
positions for a university at hand.

Table 6: Rank Acceptability Indices. For each university, we reported the best and the worst possible
positions, as well as the three highest rank acceptability indices. The blocks B1, . . . , B8 are composed
of universities having exactly the same evaluations. Let us note that with respect to all elementary
criteria there are 220 different performance vectors of the universities, so at the comprehensive level
the rank acceptability indices are computed for the positions going from the 1 to 220. Analogously,
the rank acceptability indices with respect to TL are computed for the positions from the 1 to 16,
with respect to R from 1 to 29, while on KT, from the 1 to 55.

(a) Comprehensive level

University Best
(

bBest
k,0

)

Worst
(

bWorst
k,0

)

high1

(

bhigh1

k,0

)

high2

(

bhigh2

k,0

)

high3

(

bhigh3

k,0

)

U25 18 (0.11%) 103 (0.01%) 52 (3.65%) 55 (3.45%) 58 (3.39%)

U35 80 (0.01%) 132 (0.05%) 106 (4.68%) 108 (4.04%) 105 (3.87%)

U51 47 (0.1%) 83 (0.01%) 65 (6.18%) 60 (6%) 70 (5.71%)

U61 1 (93.29%) 2 (6.71%)

U64 47 (0.02%) 133 (0.05%) 90 (2.82%) 87 (2.72%) 88 (2.66%)

U108 14 (0.16%) 51 (0.01%) 28 (8.55%) 34 (6.19%) 33 (5.8%)

U117 23 (0.15%) 90 (0.06%) 63 (3.22%) 67 (3.15%) 64 (2.82%)

U129 6 (0.2%) 68 (0.11%) 23 (4.8%) 32 (4.24%) 37 (4.12%)

U136 1 (6.71%) 12 (0.12%) 2 (60.18%) 3 (14.36%) 5 (8.88%)

U170 58 (0.04%) 99 (0.04%) 80 (6.04%) 82 (6.12%) 83 (7.02%)

U196 40 (0.01%) 77 (0.33%) 58 (5.88%) 57 (5.64%) 55 (5.6%)

U216 12 (0.04%) 81 (0.01%) 43 (4.59%) 46 (4.04%) 42 (3.65%)

(b) Teaching and Learning (TL)

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B1 3 (61.91%) 5 (18.47%) 3 (61.91%) 4 (19.62%) 5 (18.47%)

B2 1 (100.00%) 1 (100.00%)

B3 2 (100.00%) 2 (100.00%)

U35 5 (5.93%) 9 (19.37%) 6 (32.95%) 8 (28.3%) 9 (19.37%)

U51 3 (38.09%) 5 (21.64%) 4 (40.27%) 3 (38.09%) 5 (21.64%)

U61 4 (21.64%) 7 (4.04%) 6 (37.63%) 5 (36.69%) 4 (21.64%)

U64 4 (18.47%) 10 (0.05%) 7 (23.9%) 6 (23.52%) 4 (18.47%)

U196 8 (4.48%) 13 (28.09%) 13 (28.09%) 12 (22.16%) 10 (21.72%)

(c) Research (R)

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B4 5 (6.9%) 16 (1.27%) 8 (22.16%) 10 (13.81%) 11 (13.72%)

B5 15 (1.28%) 23 (0.14%) 21 (24.59%) 18 (20.95%) 20 (20.65%)

B6 1 (100.00%) 1 (100.00%)

U108 6 (0.32%) 19 (4.23%) 13 (16.05%) 14 (15.25%) 12 (11.63%)

U117 20 (1.71%) 26 (29.18%) 25 (48.64%) 26 (29.18%) 24 (14.85%)

U170 12 (3.03%) 21 (1.34%) 18 (27.28%) 17 (21.32%) 19 (16.49%)

U196 4 (43.99%) 10 (0.01%) 4 (43.99%) 5 (32.95%) 6 (10.96%)

U216 14 (4.66%) 21 (1.71%) 16 (23.79%) 15 (18.16%) 19 (17.19%)

(d) Knowledge Transfer (KT)

University Best
(

bBest
k,1

)

Worst
(

bWorst
k,1

)

high1

(

bhigh1

k,1

)

high2

(

bhigh2

k,1

)

high3

(

bhigh3

k,1

)

B7 30 (0.18%) 42 (0.3%) 36 (21.38%) 35 (18.18%) 34 (15.78%)

B8 15 (1.28%) 23 (0.14%) 21 (24.59%) 18 (20.95%) 20 (20.65%)

U25 21 (0.09%) 40 (0.09%) 30 (25.86%) 29 (11.91%) 31 (10.55%)

U51 13 (1.04%) 20 (0.38%) 16 (30.46%) 17 (22.81%) 18 (21.49%)

U61 1 (100.00%) 1 (100.00%)

U108 7 (4.92%) 14 (0.34%) 8 (20.09%) 10 (19.71%) 11 (17.92%)

U117 4 (20.81%) 14 (0.32%) 7 (22.22%) 4 (20.81%) 5 (19.14%)

U136 4 (5.2%) 20 (3.17%) 7 (11.48%) 10 (10.91%) 5 (9.05%)

U170 25 (0.3%) 36 (0.5%) 31 (34.4%) 32 (29.06%) 30 (9.87%)

U196 26 (0.01%) 39 (0.77%) 36 (17.57%) 33 (16.3%) 35 (15.43%)

Looking at Tables 6(a)-6(d) the following observations can be made.

• At comprehensive level, U61 is confirmed to be the best among the considered universities since
it has rank acceptability index for the 1st position equal to 93.29%, while the remaining 6.71%
is its rank acceptability index for the 2nd position; analogously, U136 could be considered a
pretty good university since it takes always a position between the 1st and the 12th and its
highest rank acceptability indices correspond to the 2nd and to the 3rd position. At the same
time, even if U35 and U64 belong to the first nondominated front, they do not take very high
positions in the complete rankings obtained at the comprehensive level. Indeed, on one hand,
the highest position reached by U35 is the 80th, while its highest rank acceptability index
corresponds to position 106. On the other hand, U64 reaches positions between the 47th and
the 133th, and its highest rank acceptability index corresponds to position 90.

• With respect to TL, the complete ranking is almost deterministic. Indeed, the universities
belonging to block B1, that are U25 and U170, are always in the 1st position, while the universities
belonging to block B2, that are U117 and U216, are always in the 2nd position. Considering that
on this macro-criterion there are only 16 possible positions, U196 is bad on this macro-criterion
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since it takes always a position between the 8th and the 13th and its highest rank acceptability
index corresponds to position 13.

• With respect to R, the universities belonging to block B4, that are U25, U64 and U129, are
the best since they take always the 1st position. Good results are also obtained by university
U196 which takes always positions between the 4th and the 10th, and it has the highest rank
acceptability index for position 4. U117 is instead a bad university on this macro-criterion
since it takes positions between the 20th and the 26th, and its highest rank acceptability index
corresponds to position 25.

• On KT, U61 is always the 1st while U117 and U136 are quite good since the highest position got
by both of them is the 4th, and their highest rank acceptability index corresponds to position
7. At the same time, the universities belonging to block B7, that are U35 and U64, are not very
good on KT since they take always a position between the 30th and the 42th, and their highest
rank acceptability index corresponds to position 36.

To compare the universities pairwise, we computed also the pairwise winning indices p(Uh, Uk)
providing the frequency with which university Uh is preferred to university Uk considering all criteria
simultaneously, that is at the comprehensive level, as well as considering the three macro-criteria one
by one.

Table 7: Pairwise Winning Indices

(a) Comprehensive level

p0 (·, ·) U25 U35 U51 U61 U64 U108 U117 U129 U136 U170 U196 U216

U25 0 99.87 77.21 0 94.75 2.69 55.06 3.36 0 94.93 54.78 19.78
U35 0.13 0 0 0 28.34 0 0 0 0 1.13 0 0
U51 22.79 100 0 0 88.08 0 32.1 0.82 0 96.44 23.16 4.65
U61 100 100 100 0 100 100 100 100 93.29 100 100 100
U64 5.25 71.66 11.92 0 0 0 9.85 0 0 26.51 2.25 2.67
U108 97.31 100 100 0 100 0 96.16 47.92 0 100 99.67 86.38
U117 44.94 100 67.9 0 90.15 3.84 0 8.82 0 96.72 45.94 21.63
U129 96.64 100 99.18 0 100 52.08 91.18 0 0.24 100 90.22 99.95
U136 100 100 100 6.71 100 100 100 99.76 0 100 100 100
U170 5.07 98.87 3.56 0 73.49 0 3.28 0 0 0 1.33 0.3
U196 45.22 100 76.84 0 97.75 0.33 54.06 9.78 0 98.67 0 18.88
U216 80.22 100 95.35 0 97.33 13.62 78.37 0.05 0 99.7 81.12 0

(b) Teaching and Learning (TL)

p1 (·, ·) B1 B2 B3 U35 U51 U61 U64 U196

B1 0 0 0 100 61.91 100 81.53 100
B2 100 0 100 100 100 100 100 100
B3 100 0 0 100 100 100 100 100
U35 0 0 0 0 0 8.97 36.94 100
U51 38.09 0 0 100 0 78.36 100 100
U61 0 0 0 91.03 21.64 0 63.26 100
U64 18.47 0 0 63.06 0 36.74 0 100
U196 0 0 0 0 0 0 0 0

(c) Research (R)

p2 (·, ·) B4 B5 B6 U108 U117 U170 U196 U216

B4 0 98.73 0 100 100 94.37 14.74 100
B5 1.27 0 0 7.13 100 0 0 29.51
B6 100 100 0 100 100 100 100 100
U108 0 92.87 0 0 100 80.23 0.37 100
U117 0 0 0 0 0 0 0 1.71
U170 5.63 100 0 19.77 100 0 0 43.99
U196 85.26 100 0 99.63 100 100 0 100
U216 0 70.49 0 0 98.29 56.01 0 0

(d) Knowledge Transfer (KT)

p3 (·, ·) B7 B8 U25 U51 U61 U108 U117 U136 U170 U196

B7 0 0 5.83 0 0 0 0 0 6.99 36.92
B8 100 0 100 97.27 0 52.58 0 52.26 100 100
U25 94.17 0 0 0 0 0 0 0 89.29 89.29
U51 100 2.73 100 0 0 0 0 10.75 100 100
U61 100 100 100 100 0 100 100 100 100 100
U108 100 47.42 100 100 0 0 25.01 52.24 100 100
U117 100 100 100 100 0 74.99 0 68.77 100 100
U136 100 47.74 100 89.25 0 47.76 31.23 0 100 100
U170 93.01 0 10.71 0 0 0 0 0 0 89.29
U196 63.08 0 10.71 0 0 0 0 0 10.71 0

Further information can be obtained looking at the pairwise winning indices in Tables 7(a)-7(d):

• At the comprehensive level, U61 is preferred to all but one university in the first nondominated
front with a frequency equal to 100% while it is preferred to U136 with a frequency of 93.29%.
Analogously, U136 is preferred to all but two other universities in the first nondominated front
with a frequency equal to 100%, while it is preferred to U61 with a frequency of 6.71%, while
almost always, it is preferred to U129 (p0(U136, U129) = 99.76%). Looking at the worst univer-
sities in the first nondominated front, U35 could be considered as a bad university since it is
never preferred to majority of the universities in this front apart from U25, U64 and U170, to
which it is sometimes preferred.
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• With respect to TL, universities belonging to block B2, that are U117 and U216 are obviously
always preferred to all other universities, while U196 is really bad since it is never preferred to
any other university belonging to the first nondominated front.

• With respect to R, the universities belonging to block B6, that are U61 and U136, are always
preferred to all the other universities, while U117 could be considered the worst among the
twelve universities at hand since it is only preferred to U216 with a frequency equal to 1.71%.

• With respect to KT, U61 is preferred to all other universities since it gets the best performances
on all elementary criteria descending from this macro-criterion, while U117 could be considered
a pretty good university with respect to KT since it is preferred to all other universities (apart
from U61) with a frequency at least 68.77%. Analogously, universities belonging to block B7,
that are U35 and U64, could be considered really bad since all other universities are almost
always preferred to them.

Table 8: Barycenter values of the Möbius representation of compatible capacities

m({MGR}) m({MGOT}) m({NRP}) m({CR}) m({PTCP}) m({NPA}) m({NSO}) m({RKTR}) m({MGR,MGOT}) m({MGR,NRP}) m({MGR,CR}) m({MGR,PTCP})

0.0406 0.0841 0.0504 0.1119 0.1485 0.0636 0.1277 0.1646 0.0139 0.0077 0.0506 0.0586

m({MGR,NPA}) m({MGR,NSO}) m({MGR,RKTR}) m({MGOT,NRP}) m({MGOT,CR}) m({MGOT,PTCP}) m({MGOT,NPA}) m({MGOT,NSO}) m({MGOT,RKTR}) m({NRP,CR}) m({NRP,PTCP}) m({NRP,NPA})

0.0085 0.0005 0.0058 0.0238 -0.0027 -0.0249 0.0067 0.0103 0.0009 0.0479 0.0581 0.0117

m({NRP,NSO}) m({NRP,RKTR}) m({CR,PTCP}) m({CR,NPA}) m({CR,NSO}) m({CR,RKTR}) m({PTCP,NPA}) m({PTCP,NSO}) m({PTCP,RKTR}) m({NPA,NSO}) m({NPA,RKTR}) m({NSO,RKTR})

0.0100 0.0147 -0.0464 0.0205 0.0163 -0.0082 0.0113 -0.0053 0.0024 -0.0147 -0.0119 -0.0573

In order to get a ranking of the considered universities with respect to TL, R, KT and at the com-
prehensive level, we computed the barycenter of the Möbius representation of capacities compatible
with the preferences provided by the DM. Their values are shown in Table 8. From this table one can
conclude that, considered alone, the most important criterion is RKTR (m ({RKTR}) = 0.1646),
followed by PTCP (m ({PTCP}) = 0.1485) and NSO (m ({NSO}) = 0.1277), while MGR is the
least important one (m ({MGR}) = 0.0406). Moreover, apart from information provided by the DM
about interactions between some elementary criteria, Table 8 shows other interactions, like positive
interaction between MGR and MGOT or negative interaction between NSO and RKTR.

Using the barycenter of the Möbius representation to compute the Choquet integral value for each
university, we get four complete rankings of universities at the comprehensive level and at the levels
of macro-criteria. In Tables 9(a)-9(d) we show the complete rankings of the twelve universities from
the first nondominated front, indicating their positions in complete ranking of all 220 universities.

One can observe that the Tech University Denmark is the best among the considered universities
at the comprehensive level, as well as on R and KT, while it takes the 5th position with respect to
TL. It is interesting to note that university of Trieste has a high position with respect to R (5th)
while it has a bad position with respect to KT (35th). Lomonosow Moscow State University behaves
exactly in the opposite way, getting a bad position with respect to R (25th) and a good position with
respect to KT (6th). These observations shed light on the usefulness of the MCHP in providing a
valuable insight into the problem at hand at different nodes of the hierarchy of criteria.
Even if we performed the analysis of the results for the alternatives belonging to the first nondomi-
nated front, for the sake of completeness, in Table 10 we list the first ten universities in the ranking
at the comprehensive level obtained considering the barycenter of the Möbius representation of the
capacities compatible with the preference information provided by the DM. Moreover, we reported
also the rank acceptability indices of the same universities with respect to the first five positions in
the ranking.

Looking at Table 10, one can argue that something is wrong in the presented results since only
two of the universities in the first ten positions in the comprehensive ranking belong to the first
nondominated front, that are the Tech University Denmark and the Newcastle University, even if it
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Table 9: Rankings of universities from the first nondominated front, using Möbius representation
shown in Table 8

(a) Comprehensive level

Position in the complete ranking University Country

1st Tech U Denmark Denmark
2nd Newcastle U United Kingdom
31th U Limerick Ireland
32th Mondragon U Spain
41th WHU School of Management Germany
53th Bocconi University Italy
54th U Trieste Italy
58th Lomonosow Moscow State U Russia
67th U Cordoba Spain
78th U Salamanca Spain
91th Dublin Inst. Tech Ireland
105th Budapest U Tech & Economics Hungary

(b) Teaching and Learning (TL)

Position in the complete ranking University Country

1st Lomonosow Moscow State U Russia
WHU School of Management Germany

2nd U Limerick Ireland
Mondragon U Spain
Newcastle U United Kingdom

3rd Bocconi University Italy
U Salamanca Spain

4th U Cordoba Spain
5th Tech U Denmark Denmark
6th Dublin Inst. Tech Ireland
8th Budapest U Tech & Economics Hungary
12th U Trieste Italy

(c) Research (R)

Position in the complete ranking University Country

1st Tech U Denmark Denmark
Newcastle U United Kingdom

5th U Trieste Italy
9th Bocconi University Italy

Dublin Inst. Tech Ireland
Mondragon U Spain

13th U Limerick Ireland
17th WHU School of Management Germany
18th U Salamanca Spain
19th Budapest U Tech & Economics Hungary

U Cordoba Spain
25th Lomonosow Moscow State U Russia

(d) Knowledge Transfer (KT)

Position in the complete ranking University Country

1st Tech U Denmark Denmark
6th Lomonosow Moscow State U Russia
9th Mondragon U Spain

WHU School of Management Germany
10th U Limerick Ireland
11th Newcastle U United Kingdom
16th U Cordoba Spain
28th Bocconi University Italy
31th U Salamanca Spain
35th U Trieste Italy
36th Budapest U Tech & Economics Hungary

Dublin Inst. Tech Ireland

Table 10: First ten universities in the ranking at the comprehensive level obtained by considering the
barycenter of the Möbius representations of the capacities compatible with the preferences provided
by the DMs. Moreover, we provide the rank acceptability indices of the same universities for the
first five positions.

Position University Country b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k
1st Tech U Denmark Denmark 93.29 6.71 0 0 0 0 0 0 0 0
2nd Newcastle U United Kingdom 6.71 60.18 14.36 6.99 8.88 0.61 1.08 0.32 0.3 0.31
3th Eindhoven U Tech The Netherlands 0 33.11 16.54 34.88 10.72 4.75 0 0 0 0
4th U Liverpool United Kingdom 0 0 50.12 20.91 6.44 16.13 1.46 1.58 0.84 1.07
5th U Bern Switzerland 0 0 0 11 38.28 16.13 21 4.24 1.39 0.85
6th Karlsruhe Inst. Tech (Kinst. Tech) Denmark 0 0 7.49 12.43 17.79 26.64 12.56 18.71 3.92 0.41
7th Tech U München Germany 0 0 11.26 8.47 9.22 14.52 26.74 10.58 9.3 3.23
8th U Liege Belgium 0 0 0 0.19 0.51 1.29 3.91 8.51 16.29 21.56
9th U Stuttgart Germany 0 0 0 0.89 2.46 2.03 7.37 13.49 10.67 10.63
10th U Groningen The Netherlands 0 0 0 0 0 4.52 5.53 10.71 18.63 10.21

is not the case. Indeed, the fact that a university belongs to the first nondominated front means only
that there is not any other university dominating it in consequence of its excellence in one or more of
the elementary criteria. This does not mean that at the comprehensive level, that is considering all
elementary criteria simultaneously, a university having not any excellence in some elementary criteria
but having in average good performance could not be a good university. For example, the Liverpool
University belongs to the 2nd nondominated front but its performances are such that it takes the
3rd position in the final ranking with a frequency of 50.12%. Even more, we could observe that
three of the first ten universities belong to the 2nd nondominated front (Eindhoven University Tech
and Liverpool University), three at the 3rd nondominated front (Bern University, Karlsruhe Inst.
Tech and Tech University of München), while two belong to the 4th nondominated front (Stuttgart
University and Groningen University). Once more, we would like to underline that, even if we per-
formed the analysis of the results for the universities belonging to the first nondominated front, the
DM could make a similar analysis on every other subset of universities (s)he is interested in, therefore
universities in another nondominated front or universities belonging to the same country and so on.
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An interested reader can download the file containing complete results of the application of
NAROR and SMAA on the full set of 220 universities from data-MCHP-NAROR-SMAA.

5 Conclusions

In this paper, we presented a methodology of handling a hierarchical structure of interacting criteria
in the multiple criteria ranking problem. To this end, we applied the Multiple Criteria Hierarchy
Process with the Choquet integral preference model. The preference information provided by the user
in the course of the decision aiding process has the form of pairwise comparisons of some alternatives
and some criteria at different levels of the hierarchy of criteria. The set of instances of the Choquet
integral compatible with this preference information is identified using the Robust Ordinal Regression
(ROR). Then, Stochastic Multiobjective Acceptability Analysis (SMAA) is applied on this set of
compatible instances, leading to recommendations in the form of complete rankings of alternatives
at the comprehensive level of the hierarchy of criteria and with respect to all subcriteria excluding
the elementary ones. SMAA provides, moreover, many useful indices permitting to assess the relative
quality of particular alternatives in different nodes of the hierarchy tree, i.e., with respect to different
macro-criteria..

The presented methodology performs a constructive learning process in which the user learns
from the results supplied by ROR and SMAA indices, and the method learns from the preference
information supplied incrementally by the user in successive iterations. This process ceases when the
obtained recommendations and indices are conclusive enough for the user.

We envisage to apply the hierarchical Choquet integral preference model in conjunction with
ROR and SMAA in case of criteria involving different evaluation scales. In this case, the method
presented recently in [4] can be used to construct a common scale without the need of normalizing
the evaluations.
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Appendix

Proof of Proposition 2.1
We shall prove Proposition 2.1 by induction over α.

• First, let us prove the thesis for α = 1. In this case, considering criterion G(r,w1) as subcriterion
of criterion Gr at the level k, we have

mk
r
(
{

G(r,w1)

}

) = µk
r
(
{

G(r,w1)

}

) =
µ(E(

{

G(r,w1)

}

))

µ(E(Gr))
=

∑

T⊆E(G(r,w1)
)

m(T )

µ(E(Gr))
.
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The first equality is obtained by eq. (14) defining the Möbius transformation mk
r

of the capacity
µk
r
; the second equality is obtained by equation (10) defining the capacity µk

r
in terms of the

capacity µ while the third one is obtained by equation (1) defining the Möbius transformation
m of the capacity µ.

• Let us suppose that the thesis is true for α = n−1, that is, for all
{

G(r,w1), . . . , G(r,wn−1)

}

⊆ Gk
r
,

mk
r
(
{

G(r,w1), . . . , G(r,wn−1)

}

) =

∑

T1⊆E(G(r,w1)
), T1 6=∅,

···
Tα⊆E(G(r,wn−1)

), Tn−1 6=∅,

m({T1, . . . , Tn−1})

µ(E(Gr))
.

• Now, let us prove that the thesis is true for α = n.
Let

{

G(r,w1), . . . , G(r,wn)

}

⊆ Gk
r

and let us compute µk
r

({

G(r,w1), . . . , G(r,wn)

})

.

– By equation (14), we have that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
∑

T⊆{G(r,w1)
,...,G(r,wn)}

mk
r
(T ) =

∑

T⊂{G(r,w1)
,...,G(r,wn)}

mk
r
(T )+

+mk
r

({

G(r,w1), . . . , G(r,wn)

})

=
n

∑

β=1

mk
r

({

G(r,wβ)

})

+
∑

{β1,β2}⊂{w1,...,wn}

mk
r

({

G(r,β1), G(r,β2)

})

+

+ . . . +
∑

{β1,...,βn−1}⊂{1,...,n}

mk
r

({

G(r,β1), . . . , G(r,βn−1)

})

+ mk
r

({

G(r,w1), . . . , G(r,wn)

})

.

For the inductive hypothesis, we have therefore that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
n

∑

β=1

∑

Tβ⊆E
(

G(r,wβ)

)

m(Tβ)

µ(E(Gr))
+

+
∑

{β1,β2}⊂{w1,...,wn}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

,Tβ1
6=∅,

Tβ2
⊆E

(

G(r,wβ2
)

)

,Tβ2
6=∅

m ({Tβ1 , Tβ2})

µ(E(Gr))
+ . . .+ (19)

+
∑

{β1,...,βn−1}⊂{1,...,n}

∑

Tβ1
⊆E

(

G(r,wβ1
)

)

,Tβ1
6=∅,

···

Tβn−1
⊆E

(

G(r,wβn−1
)

)

,Tβn−1
6=∅

m
({

Tβ1 , . . . , Tβn−1

})

µ(E(Gr))
+mk

r
(
{

G(r,w1), . . . , G(r,wα)

}

).

– From equation (10) we have that

µk
r

({

G(r,w1), . . . , G(r,wn)

})

=
µ
(

E
({

G(r,w1), . . . , G(r,wn)

}))

µ(E(Gr))
=

∑

T⊆E({G(r,w1)
,...,G(r,wn)})

m(T )

µ(E(Gr))
=
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=
n

∑

β=1

∑

Tβ⊆E
(

G(r,wβ)

)

m(Tβ)

µ(E(Gr))
+

∑
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∑

Tβ1
⊆E

(
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)
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...
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m
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+

∑

T1⊆E(G(r,w1
)), T1 6=∅,

···
Tn⊆E(G(r,wn)), Tn 6=∅

m ({T1 ∪ . . . ∪ Tn})

µ(E(Gr))

From equations (19) and (20), we get the thesis.

Proof of Proposition 2.2
Let m the Möbius representation of a q-additive capacity µ,

{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r

with α > q
and mk

r
the Möbius representation of the capacity µk

r
. By Proposition (2.1), we have that

mk
r

({

G(r,w1), . . . , G(r,wα)

})

=

∑

T1⊆E(G(r,w1)), T1 6=∅,
···

Tα⊆E(G(r,wα)), Tα 6=∅

m ({T1, . . . , Tα})

µ(E(Gr))
.

Observing that the set {T1, . . . , Tα} will contain at least q + 1 elements (since α > q) and that the
capacity µ is q-additive, we get that mk

r

({

G(r,w1), . . . , G(r,wα)

})

= 0 for all
{

G(r,w1), . . . , G(r,wα)

}

⊆ Gk
r

with α > q.

Proof of Proposition 2.3

1. Given G(r,w) ∈ Gk
r
, by equations (15) and (2.1) and, considering that the capacity µ is 2-additive,

we have that

ϕk
r

({

G(r,w)

})

=
∑

F⊆Gk
r : G(r,w)∈F

mk
r

(F)

|F|
= mk

r

({

G(r,w)

})

+
∑

G(r,w1)
⊆Gk

r \{G(r,w)}

mk
r

({

G(r,w), G(r,w1)

})

2
=

=
∑

T⊆E(G(r,w))

m(T )

µ(E(Gr))
+

1

2

∑

G(r,w1)
⊆Gk

r \{G(r,w)}

∑

T1⊆E(G(r,w)), T1 6=∅,

T2⊆E(G(r,w1)), T2 6=∅

m({T1, T2})

µ(E(Gr))
=
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=
1

µ(E(Gr))







∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m ({gt1 , gt2})






+

1

µ(E(Gr))

∑

t1∈E(G(r,w)),
t2∈E(Gk

r \G(r,w))

m ({gt1 , gt2})

2
=

=













∑

t∈E(G(r,w))

m(gt) +
∑

t1,t2∈E(G(r,w))

m ({gt1 , gt2}) +
∑

t1∈E(G(r,w)),
t2∈E(Gk

r \G(r,w))

m ({gt1 , gt2})

2













1

µ (E(Gr))
.

2. Given G(r,w1), G(r,w2) ∈ Gk
r
, by equation (16) and Proposition 2.1 and, considering that the

capacity µ is 2-additive, we have that

ϕk
r

({

G(r,w1), G(r,w2)

})

=
∑

F⊆Gk
r : G(r,w1)

,G(r,w2)
∈F

mk
r
(F)

|F| − 1
= mk

r

({

G(r,w1), G(r,w2)

})

=

=
∑

T1⊆E(G(r,w1)), T1 6=∅,

T2⊆E(G(r,w2)), T2 6=∅

m ({T1, T2})

µ(E(Gr))
=











∑

t1∈E(G(r,w1)
),

t2∈E(G(r,w2)
)

m ({gt1 , gt2})











1

µ(E(Gr))
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[43] R. S lowiński, S. Greco, and B. Matarazzo. Rough-Set-Based Decision Support. In E.K. Burke
and G. Kendall, editors, Search Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, 2nd edition, pages 557–609. Springer, New York, 2014.

[44] R.L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over
bounded regions. Operations Research, 32:1296–1308, 1984.

[45] T. Stewart. Dealing with Uncertainties in MCDA. In J. Figueira, S. Greco, and M. Ehrgott,
editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 445–460. Springer,
Berlin, 2005.

[46] M. Sugeno. Theory of fuzzy integrals and its applications. Tokyo institute of Technology, 1974.

[47] M. Sugeno, K. Fujimoto, and T. Murofushi. A hierarchical decomposition of Choquet integral
model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 03(01):1–
15, 1995.

[48] T. Tervonen and J.R. Figueira. A survey on Stochastic Multicriteria Acceptability Analysis
methods. Journal of Multi-Criteria Decision Analysis, 15(1-2):1–14, 2008.

[49] T. Tervonen, G. Van Valkenhoef, N. Bastürk, and D. Postmus. Hit-And-Run enables efficient
weight generation for simulation-based multiple criteria decision analysis. European Journal of
Operational Research, 224:552–559, 2013.

[50] G. Van Valkenhoef, T. Tervonen, and D. Postmus. Notes on “Hit-And-Run enables efficient
weight generation for simulation-based multiple criteria decision analysis”. European Journal of
Operational Research, 239(3):865–867, 2014.

29


	Abstract
	Introduction
	Basic concepts
	The Choquet integral, preference model
	Non Additive Robust Ordinal Regression (NAROR)
	Stochastic Multiobjective Acceptability Analysis (SMAA)
	Multiple Criteria Hierarchy Process (MCHP) and the Choquet integral preference model
	Example


	Robust Ordinal Regression (ROR) and Stochastic Multiobjective Acceptability Analysis (SMAA) applied to the hierarchical Choquet integral preference model
	An illustrative real world decision making problem
	Conclusions

