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1. Introduction

Making any type of decision, from buying a car to siting a nuclear plant, from choosing the
best student deserving a scholarship to ranking the cities of the world according to their liveability,
involves the evaluation of several alternatives with respect to different aspects, technically called
evaluation criteria. Multiple Criteria Decision Aiding (MCDA) (see [13, 14]) provides methodologies
to recommend the Decision Maker (DM) a decision that best fits the DM’s preferences. Formally,
in MCDA, a set of n alternatives A = {a1, . . . , an} is evaluated with respect to a consistent family
of m criteria G = {g1, . . . , gm} [50]. In general, each criterion gj ∈ G can be considered as a real-
valued function gj : A → Ij ⊆ R, where the elements of Ij are real numbers having either the
meaning of quantities for quantitative criteria, or the meaning of ordered identifiers for qualitative
criteria, e.g., 1=“bad”, 2=“medium”, 3=“good”. Each criterion gj can have an increasing or a
decreasing direction of preference. In the first case, the higher the evaluation gj(a), the better a is
with respect to criterion gj; in the other case, the higher the evaluation gj(a), the worse a is with
respect to criterion gj. For example, evaluating a car involves both quantitative and qualitative
criteria having increasing or decreasing direction of preference. Price and acceleration are typical
quantitative criteria while comfort and safety are qualitative criteria. Among these, acceleration,
comfort and safety have an increasing direction of preference, while price has a decreasing direction of
preference. In the following, without loss of generality, we shall suppose that criteria have increasing
direction of preference.
According to Roy [51], in MCDA the following three most important decision problems are considered:

• the choice problem, requiring to select a small number (as small as possible) of “good” alter-
natives in such a way that a single alternative may finally be chosen;

• the sorting problem, requiring to assign each alternative to some pre-defined and ordered
categories;

• the ranking problem, requiring to define a complete or partial order on A; this preorder is
the result of a procedure allowing to put together in classes alternatives which can be judged
indifferent, and to rank these classes.

Given two alternatives a, b ∈ A and considering their evaluations on the m criteria belonging to
family G, very often a will be better than b for some of the criteria, while b will be better than a for
the remaining criteria. For this reason, in order to cope with the three above mentioned problems,
it is necessary to aggregate the evaluations of the alternatives, taking into account the preferences
of the DM. In the literature, the three best known ways of aggregation are the following:
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• assigning to each alternative a ∈ A a real number synthesizing the evaluations of a on the m

criteria and being representative of the desirability of a with respect to the problem at hand,
as it is the case in MAUT - Multi-Attribute Utility Theory (see [12, 44]),

• building some outranking preference relation S on A, such that for any a, b ∈ A, aSb means
that a is at least as good as b, as it is the case in outranking methods (see [16, 19, 50]),

• using a set of “if..., then...” decision rules induced from the DM’s preference information
through Dominance-based Rough Set Approach (DRSA, see [25, 27, 57, 58]).

The above three ways of aggregation lead to three models of DM’s preferences, called shortly
preference models. They have been compared at an axiomatic level with respect to their capacity
of representation. The comparison leads to a conclusion that the decision rule model is the most
general and able to represent the most complex interactions among criteria [26, 56].

In case of the first model, in order to assign a real number to each alternative, we consider a
value function U :

∏m

j=1 Ij → R, such that for any a, b ∈ A, a is at least as good as b (a % b) if
U(g1(a), . . . , gm(a)) ≥ U(g1(b), . . . , gm(b)). The simplest form of the value function is the additive
form, defined as: U(g1(a), . . . , gm(a)) =

∑m

j=1 uj(gj(a)), where uj(gj(a)) are non-decreasing func-
tions of their arguments. In the following, for simplicity of notation, we shall use U(a) instead of
U(g1(a), . . . , gm(a)) for all a ∈ A.

In case of the second model, we consider a function S :
∏m

j=1 Ij ×
∏m

j=1 Ij → R, non-decreasing in its
first m arguments and non-increasing in its last m arguments, such that for each a, b ∈ A, we have:

• S((g1(a), . . . , gm(a)), (g1(b), . . . , gm(b))) = 1 if aSb, and
S((g1(a), . . . , gm(a)), (g1(b), . . . , gm(b))) = 0 otherwise, in case a crisp outranking relation is
considered,

• a outranks b with a credibility S((g1(a), . . . , gm(a)), (g1(b), . . . , gm(b))) ∈ [0, 1] in case a fuzzy
outranking relation is considered.

In case of the third model, starting from some preference information provided by the DM in the
form of decision examples, the aim is to express relationships between the comprehensive decision
concerning an alternative and its evaluations on relevant criteria, using “if..., then...” decision rules,
such as:

• if maximum speed of a car is at least 175 km/h, and its price is at most 12000 euro, then this
car is comprehensively at least medium.

The choice of a multicriteria decision aiding method well adapted to the decision context depends
on several aspects of the decision process and of the cooperation between the analyst and the DM
[53].

2. Ordinal regression

Each decision model requires specification of some parameters. For example, using MAUT, the
parameters are related to the formulation of the marginal value functions uj(gj(a)), j = 1, . . . ,m.
Eliciting direct preference information from the DM can be counterproductive in real-world decision
making situations because of a high cognitive effort required. Consequently, within MCDA, many
methods have been proposed to determine the parameters characterizing the considered decision
model in an indirect way, i.e., inducing the values of such parameters from some holistic preference
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comparisons of alternatives given by the DM. This indirect preference elicitation is less demanding
of cognitive effort and it is mainly used in the ordinal regression paradigm.

The most well-known ordinal regression methodology is the UTA (UTilités Additives) method
proposed by Jacquet-Lagrèze and Siskos [33], which aims at inferring one or more additive value
functions from a given complete ranking on a reference set of alternatives AR. The method con-
siders a piecewise additive value function U(a) =

∑m

j=1 uj(gj(a)) having marginal value functions
uj(·), j = 1, . . . ,m, being piecewise-linear, with a pre-defined number of linear pieces. UTA uses
linear programming to assess the additive value function compatible with the preference information
provided by the DM. Technically, we have to solve a linear programming problem of the type:

max ε, s.t.

U(a∗) ≥ U(b∗) + ε if a∗ ≻ b∗, with a∗, b∗ ∈ AR,

U(a∗) = U(b∗) if a∗ ∼ b∗, with a∗, b∗ ∈ AR,
m
∑

j=1

uj(βj) = 1, uj(αj) = 0, j = 1, . . . ,m,

uj(gj(a)) ≥ uj(gj(b)) if gj(a) ≥ gj(b), ∀a, b ∈ A, j = 1, . . . ,m,


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where

• βj and αj are the best and the worst considered values of criterion gj, j = 1, . . . ,m,

• ≻ and ∼ are the asymmetric and the symmetric part of the binary relation %, representing the
DM’s preference information, i.e., a∗ % b∗ means that a∗ is at least as good as b∗ for the DM,

• here, as always in the following, ε is considered without any constraint on the sign.

If the set of constraints EA is feasible and ε∗ > 0, then there exists at least one additive value
function compatible with the DM’s preferences. If there is no compatible value function, i.e., if the
preferences of the DM cannot be represented by an additive value function with pre-defined number
of linear pieces, [33] suggests either to increase the number of linear pieces in some marginal value
functions, or to select the utility function U that gets the sum of deviation errors close to minimum
and minimizes the number of ranking errors in the sense of Kendall or Spearman distance.
The ordinal regression paradigm has been applied within the two main MCDA approaches: those
using a value function as preference model [9, 33, 34, 49, 59], and those using an outranking relation
as preference model [47, 48].

3. Robust ordinal regression

Usually, from among many sets of parameters of a preference model representing the preference
information given by the DM, only one specific set is selected and used to work out a recommendation.
Since the selection of one from among many sets of parameters compatible with the preference
information given by the DM is rather arbitrary, Robust Ordinal Regression (ROR) proposes taking
into account all the sets of parameters compatible with the preference information, in order to give
a recommendation in terms of necessary and possible consequences of applying all the compatible
preference models on the considered set of alternatives: the necessary weak preference relation holds
for any two alternatives a, b ∈ A (a %N b) if and only if a is at least as good as b for all compatible
preference models, while the possible weak preference relation holds for this pair (a %P b) if and only
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if a is at least as good as b for at least one compatible preference model.
Although UTAGMS [29] is the first method applying the ROR concepts, in the following, we shall
describe the GRIP method [18] being its generalization taking into account intensity of preference.
Then, we shall mention the other applications of the ROR that have been published later in several
papers.

3.1. GRIP

In the UTAGMS method [29], which initiated the stream of further developments in ROR, the
ranking of reference alternatives does not need to be complete as in the original UTA method [33].
Instead, the DM may provide pairwise comparisons just for those reference alternatives (s)he really
wants to compare. Precisely, the DM is expected to provide a partial preorder % on AR.

Obviously, one may also refer to the relations of strict preference ≻ or indifference ∼, which are
defined as, respectively, the asymmetric and symmetric part of %. The transition from a reference
preorder to a value function is done in the following way: for a∗, b∗ ∈ AR,

U(a∗) ≥ U(b∗) + ε, if a∗ ≻ b∗,

U(a∗) = U(b∗), if a∗ ∼ b∗,

}

E1

where ε is a (generally small) positive value.
In some decision making situations the DMs are willing to provide more information than a partial

preorder on a set of reference alternatives, such as “a∗ is preferred to b∗ at least as much as c∗ is
preferred to d∗”. The information related to the intensity of preference is accounted by the GRIP
method [18]. It may refer to the comprehensive comparison of pairs of reference alternatives on all
criteria or to a particular criterion only. Precisely, in the holistic case, the DM may provide a partial
preorder %∗ on AR × AR, whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗ (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗.

When referring to a particular criterion gj ∈ G, rather than to all criteria jointly, the meaning of the
expected partial preorder %∗

j on AR × AR is the following: for a∗, b∗, c∗, d∗ ∈ AR,

(a∗, b∗) %∗

j (c∗, d∗) ⇔ a∗ is preferred to b∗ at least as much as c∗ is preferred to d∗ on criterion gj.

In both cases, the DM is allowed to refer to the strict preference and indifference relations rather than
to weak preference only. The transition from the partial preorder expressing intensity of preference
to a value function is the following: for a∗, b∗, c∗, d∗ ∈ AR,

U(a∗) − U(b∗) ≥ U(c∗) − U(d∗) + ε, if (a∗, b∗) ≻ (c∗, d∗),

U(a∗) − U(b∗) = U(c∗) − U(d∗), if (a∗, b∗) ∼ (c∗, d∗),

uj(a
∗) − uj(b

∗) ≥ uj(c
∗) − uj(d

∗) + ε, if (a∗, b∗) ≻j (c∗, d∗) for gj ∈ G,

uj(a
∗) − uj(b

∗) = uj(c
∗) − uj(d

∗), if (a∗, b∗) ∼j (c∗, d∗) for gj ∈ G.
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In order to check if there exists at least one model compatible with the preferences of the DM we
solve the following linear programming problem:

ε∗ = max ε, s.t.

E ∪ E1 ∪ E2 = EDM
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If the set of constraints EDM is feasible and ε∗ > 0, then there exists at least one additve value
function compatible with the preference information provided by the DM, otherwise no additive
value function is compatible with the provided information. In this case, the analyst can decide to
check for the cause of the incompatibility [46] or can continue the decision aiding process accepting
the incompatibility.

Denoting by UAR the set of value functions compatible with the preference information provided
by the DM, in the GRIP method three types of necessary and possible preference relations can be
defined:

• a %N b iff U(a) ≥ U(b) for all U ∈ UAR , with a, b ∈ A,

• a %P b iff U(a) ≥ U(b) for at least one U ∈ UAR , with a, b ∈ A,

• (a, b) %∗N (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for all U ∈ UAR , with a, b, c, d ∈ A,

• (a, b) %∗P (c, d) iff U(a) − U(b) ≥ U(c) − U(d) for at least one U ∈ UAR , with a, b ∈ A,

• (a, b) %∗N
j (c, d) iff uj(a) − uj(b) ≥ uj(c) − uj(d) for all U ∈ UAR , with a, b, c, d ∈ A, gj ∈ G,

• (a, b) %∗P
j (c, d) iff uj(a)−uj(b) ≥ uj(c)−uj(d) for at least one U ∈ UAR , with a, b ∈ A, gj ∈ G.

Given alternatives a, b, c, d ∈ A, and the sets of constraints

U(b) ≥ U(a) + ε

EDM

}

EN(a, b),
U(a) ≥ U(b)

EDM

}

EP (a, b)

U(c) − U(d) ≥ U(a) − U(b) + ε

EDM

}

EN(a, b, c, d),
U(a) − U(b) ≥ U(c) − U(d)

EDM

}

EP (a, b, c, d)

uj(c) − uj(d) ≥ uj(a) − uj(b) + ε

EDM

}

EN
j (a, b, c, d),

uj(a) − uj(b) ≥ uj(c) − uj(d)

EDM

}

EP
j (a, b, c, d)

we get that:

• a %N b iff EN(a, b) is infeasible or it is feasible and εN(a, b) ≤ 0, where εN(a, b) = max ε, s.t.
EN(a, b);

• a %P b iff EP (a, b) is feasible and εP (a, b) > 0, where εP (a, b) = max ε, s.t. EP (a, b);

• (a, b) %∗
N

(c, d) iff EN(a, b, c, d) is infeasible or it is feasible and εN(a, b, c, d) ≤ 0, where
εN(a, b, c, d) = max ε, s.t. EN(a, b, c, d);

• (a, b) %∗
P

(c, d) iff EP (a, b, c, d) is feasible and εP (a, b, c, d) > 0, where εP (a, b, c, d) = max ε,
s.t. EP (a, b, c, d);

• (a, b) %∗
N

j (c, d) iff EN
j (a, b, c, d) is infeasible or it is feasible and εNj (a, b, c, d) ≤ 0, where

εNj (a, b, c, d) = max ε, s.t. EN
j (a, b, c, d);

• (a, b) %∗
P

j (c, d) iff EP
j (a, b, c, d) is feasible and εPj (a, b, c, d) > 0, where εPj (a, b, c, d) = max ε,

s.t. EP
j (a, b, c, d);
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As to properties of %N and %P on A, let us remind after [29] that:

• %N is a partial preorder on A,

• %N⊆%P ,

• a %N b and b %P c ⇒ a %P c, ∀a, b, c ∈ A,

• a %P b and b %N c ⇒ a %P c, ∀a, b, c ∈ A,

• a %N b or b %P a, ∀a, b ∈ A.

The above properties are the minimal ones characterizing %N and %P [20]. Other interesting prop-
erties of %N and %P are the following [29]:

• %P is strongly complete and negatively transitive,

• ≻P is complete, irreflexive and transitive.

4. Further developments

When looking at the final ranking, the DM is mainly interested in the position which is attained
by a given alternative and, possibly, in its comprehensive score. Therefore, in the RUTA method
[38], the kind of preference information that may be supplied by the DM have been extended by
information referring to the desired rank of reference alternatives, i.e. final positions and/or scores
of these alternatives. Indeed, people are used to refer to the desired ranks of the alternatives in
their judgments. In many real-world decision situations (e.g., evaluation of candidates for a certain
position) they use statements such as, e.g., a∗ should be among the 5% of best/worst alternatives or
b∗ should be ranked in the second ten of alternatives. These statements refer to the range of allowed
ranks that a particular alternative should attain. When using such expressions, people do not confront
“one vs one” as in pairwise comparisons, or “pair vs pair” as in statements concerning intensity of
preference, but rather rate a given alternative individually, comparing it with all the remaining
alternatives jointly. Extreme ranking analysis [35] provides the worst and the best positions that
each alternative can obtain taking into consideration the whole set UAR of compatible value functions.
See [1, 54, 55] for some recent applications of the extreme ranking analysis methodology.

A great majority of methods designed to support the multiple criteria decision process, assume
that all evaluation criteria are considered at the same level. However, practical applications are
often imposing a hierarchical structure of criteria. For example, in economic ranking, alternatives
may be evaluated on indicators which aggregate evaluations on several sub-indicators, and these sub-
indicators may aggregate another set of sub-indicators, etc. In this case, the marginal value functions
may refer to all levels of the hierarchy, representing values of particular scores of the alternatives on
indicators, sub-indicators, sub-sub-indicators, etc. In Multiple Criteria Hierarchy Process [3, 10, 11],
the DM may provide a partial preorder of reference alternatives in each node of the hierarchy and
obtain a necessary and a possible preference relation on the whole set of alternatives in each node.
MCHP permits to decompose a complex decision problem into a series of simpler subproblems.

UTADISGMS method [30] applies the ROR to sorting problems. The DM can provide preference
information in terms of assignment of alternatives to intervals of classes obtaining as result, for
each alternative, intervals of classes to which it can be assigned necessarily and possibly taking into
account the whole set of compatible value functions. This approach has been subsequently extended
to the DIS-CARD method, which additionally admits specification of desired class cardinalities [41].
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ROR has been applied to extend the two best known families of outranking methods, that are
ELECTRE [22] and PROMETHEE [35], giving birth to the ELECTREGKMS and the PROMETHEEGKS

methods. In these methods, the DM can provide preference information in terms of outranking of an
alternative over another and/or can give comparisons between weights, possible intervals of weights,
or intervals of thresholds. As a result, ROR gives necessary and possible outranking relations between
alternatives taking into account the whole family of sets of preference model parameters (weights,
indifference, preference and veto thresholds, concordance cutting level) compatible with preference
information.

Even if the additive model is among the most popular ones, some critics have been addressed to
this model because it has to obey an often unrealistic hypothesis about preferential independence
among criteria. In consequence, it is not able to represent interactions among criteria [60]. For
example, consider evaluation of cars using such criteria as maximum speed, acceleration and price.
In this case, there may exist a negative interaction (redundancy) between maximum speed and
acceleration because a car with a high maximum speed also has a good acceleration, so, even if
each of these two criteria is very important for a DM who likes sport cars, their joint impact on
reinforcement of preference of a more speedy and better accelerating car over a less speedy and worse
accelerating car will be smaller than a simple addition of the two impacts corresponding to each of
the two criteria considered separately in validation of this preference relation. In the same decision
problem, there may exist a positive interaction (synergy) between maximum speed and price because
a car with a high maximum speed usually also has a high price, and thus a car with a high maximum
speed and relatively low price is very much appreciated. Thus, the comprehensive impact of these
two criteria on the strength of preference of a more speedy and cheaper car over a less speedy and
more expensive car is greater than the impact of the two criteria considered separately in validation
of this preference relation.

To handle the interactions among criteria, one can consider non-additive integrals, such as Cho-
quet integral and Sugeno integral (see, e.g., [21]). ROR has been applied to such types of preference
models orginating the Non Additive Robust Ordinal Regression (NAROR) [5]. However, the non-
additive integrals suffer from limitations within MCDA (see [52]); in particular, they need that the
evaluations on all criteria are expressed on the same scale. This means that in order to apply a
non-additive integral it is necessary, for example, to estimate if the maximum speed of 200 km/h is
as valuable as the price of 35,000 euro. Thus, in order to take into account positive and negative
synergies, UTAGMS method has been extended to the UTAGMS-INT method [31] which considers a
value function, composed not only of the sum of marginal non-decreasing value functions but also
of penalty and bonus functions representing negative and positive synergy between criteria, respec-
tively. Based on a value function similar to that one used in UTAGMS-INT, the customer satisfaction
method MUSAINT [2] applies the ROR concept to compare different customer profiles taking into
account all the value functions compatible with the customers’ preferences.

Robust ordinal regression has also been adapted to aid a group of DMs, D= {d1, . . . , dp}, to
cooperate in view of taking a collective decision. In UTAGMS-GROUP and UTADISGMS-GROUP
methods [23], the collective results account for the preferences expressed by each DM. For example,
based on the necessary (%N

dr
) and possible (%P

dr
) preference relations for each DM dr, in the UTAGMS-

GROUP method four relations can be defined:

• a %N,N
D

b : a %N
dr

b for all dr ∈ D,

• a %N,P
D

b : a %N
dr

b for at least one dr ∈ D,

• a %P,N
D

b : a %P
dr

b for all dr ∈ D,
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• a %P,P
D

b : a %P
dr

b for at least one dr ∈ D.

Considering results of four different types permits to indicate what would happen always (for all
compatible functions), sometimes (for at least one compatible function), or never (for none of the
compatible functions) with respect to a subset or to the whole set of DMs. In this way, one can
investigate spaces of consensus and disagreement between the DMs.

Even if the recommendations obtained using ROR are “more robust” than a recommendation
made using an arbitrarily chosen compatible model, in some decision-making situations a score is
needed to be known for different alternatives; for this reason, some users would like to see the
“representative” model among all the compatible ones. The motto underlying this proposal is “one
for all, all for one”. The representative value function represents all compatible value functions,
which also do contribute to its definition. Based on the ROR concept, the representative model is
the compatible model maximizing the difference of values between alternatives a and b for which a

is necessarily preferred to b but b is not necessarily preferred to a, and minimizing the difference of
values between alternatives a and b for which neither a is necessarily preferred to b nor b is necessarily
preferred to a. The representative model concept has been introduced for the first time in [17] and
then applied to deal with ranking and choice problems [4, 37], outranking methods [36], sorting
problems [24] and group decision making [39].

In order to explain the necessary and possible preference relations given by ROR in terms of
conditions on evaluation criteria, [32] proposes to couple ROR with Dominance-based Rough Set
Approach (DRSA) [28]. Applying DRSA to the necessary and possible preference supplied by ROR,
we get decision rules stating, e.g., that the preference, either necessary or possible, of alternative a

over alternative b is explained by a strong preference on criterion gj1 and at least mild preference
on criterion gj2 . In this case, the strong preference on criterion gj1 and the at least mild preference
on criterion gj2 become the arguments suggested by the rule for the preference of a over b. In a
learning perspective, decision rules supplied by DRSA can be the starting point for an interactive
procedure for analyzing and constructing the DM’s preferences. It enables the DM’s understanding
of the conditions for the suggested recommendation, and provides useful information about the role
of particular criteria or their subsets.

ROR has been applied in Multiple Objective Optimization (MOO; for an exhaustive collection of
surveys on MOO see [6]) in [15] and [40]. In the first paper, GRIP method is used for an interactive
exploration of the Pareto optimal set of a MOO. In the latter paper, pairwise comparisons provided
by the DM are used to systematically contract a cone formed by the directions of the isoquants
of all compatible achievement scalarizing functions. This cone is focusing the DM’s attention on a
subregion of the non-dominated set that better corresponds to her/his preferences.

It is also worth mentioning that ROR has been applied to guide Evolutionary Multiobjective
Optimization (EMO), i.e., a procedure that approximates the Pareto front of a multiobjective opti-
mization problem evolving an initial population of solutions through multiple generation by breeding
and mutation, towards the set of solutions most preferred by the DM [7, 8].

Recent extensions of the ROR approach are presented in [42, 43] where the Stochastic Multiob-
jective Acceptability Analysis (SMAA) [45] and the ROR are put together under a unified decision
support framework.

5. Conclusion

In this article, we have presented the Robust Ordinal Regression (ROR) being a family of Multi-
criteria Decision Aiding methods aiming at taking into account not only one compatible preference
model but the whole set of models compatible with some preference information provided by the
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DM in terms of pairwise comparison of some alternatives, intensities of preference, rank-related re-
quirements, or statements concerning interaction between criteria. We have presented the GRIP
method being the extension of the first ROR method UTAGMS. We have mentioned also other
applications of the ROR, including hierarchy of criteria (MCHP), sorting problems (UTADISGMS),
outranking methods (ELECTREGKMS and PROMETHEEGKS), non-additive integrals (NAROR),
group decisions (UTAGMS-GROUP and UTADISGMS-GROUP), and multiple objective optimization.
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[2] A. Angilella, S. Corrente, S. Greco, and R. S lowiński. MUSA-INT: Multicriteria customer satisfaction analysis
with interacting criteria. Omega, 42:189–200, 2014.
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Interactive and Evolutionary Approaches, State-of-the-Art Survey series, LNCS 5252, chapter 4, pages 97 – 120.
Springer, Berlin, 2008.
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