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Abstract

The Choquet integral preference model is adopted in Multiple Criteria Decision Aiding

(MCDA) to deal with interactions between criteria, while the Stochastic Multiobjective Accept-

ability Analysis (SMAA) is an MCDA methodology considered to take into account uncertainty

or imprecision on the considered data and preference parameters. In this paper, we propose

to combine the Choquet integral preference model with the SMAA methodology in order to

get robust recommendations taking into account all parameters compatible with the preference

information provided by the Decision Maker (DM). In case the criteria are on a common scale,

one has to elicit only a set of non-additive weights, technically a capacity, compatible with the

DM’s preference information. Instead, if the criteria are on different scales, besides the capacity,

one has to elicit also a common scale compatible with the preferences given by the DM. Our

approach permits to explore the whole space of capacities and common scales compatible with

the DM’s preference information.
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1 Introduction

In Multiple Criteria Decision Aiding (MCDA) (see [9] for a collection of surveys on MCDA), an

alternative ak, belonging to a finite set of l alternatives A = {a1, . . . , al}, is evaluated on the basis

of a family of n criteria G = {g1, . . . , gn}. For example, in a car decision problem, the set A is

composed of different car models while criteria in G are features of the cars taken into consideration,

such as, price, maximum speed, acceleration and so on. In the description of the methodology we

are proposing, we shall suppose, for the sake of simplicity, that gi : A → Xi ⊆ R, which does not

exclude Xi from being a number-coded ordinal scale.

To give a recommendation for the decision making problem at hand, the evaluations of the

alternatives on all criteria have to be aggregated. In literature, the three main aggregation approaches

are the Multi-Attribute Value Theory (MAVT) [26], the outranking methods [34] (among which the

most well known are the ELECTRE [11] and PROMETHEE [5] methods) and the Dominance-

based Rough Set Approach (DRSA, see [20]). In the following, we shall describe MAVT being the

aggregation approach used in the paper.

MAVT takes into consideration an overall value function U : Rn → R with U(g1(ak), . . . , gn(ak)) =

U(ak), such that alternative ak is indifferent to alternative ah iff U(ak) = U(ah) and ak is preferred

to ah iff U(ak) > U(ah) for any ak, ah ∈ A. The value functions used in MAVT can take different

forms, but, the most common is the additive one. It is based on the preference independence of

the criteria [26, 45], even if it is an unrealistic assumption or a too strong simplification, since in

many cases the criteria can be interacting. For instance, let us consider the car decision problem

introduced above. On one hand, maximum speed and acceleration are redundant criteria because,

in general, speedy cars also have a good acceleration. Therefore, even if these two criteria can be

very important, their comprehensive importance is smaller than the sum of the importance of the

two criteria considered separately. On the other hand, maximum speed and price lead to a synergy

effect, because a speed car having also a low price is very well appreciated. For such a reason, the

comprehensive importance of these two criteria should be greater than the sum of the importance of

the two criteria considered separately.

In the MAVT context, multiplicative and multilinear value functions are able to take into account

interactions between criteria, but, due to the high number of parameters that have to be elicited from

the DM, its use results of marginal relevance in real world applications [38]. Recently, interactions

between criteria have been considered also in ELECTRE methods [10] and PROMETHEE methods

[7].
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Within MCDA, the interaction between criteria has frequently been dealt by using non-additive

integrals, the most well known of which are the Choquet integral [6] and the Sugeno integral [39]

(see [12, 17, 18] for a comprehensive survey on the use of non-additive integrals in MCDA; see also

[15, 16, 19, 21] for some recently proposed extensions of non-additive integrals useful in MCDA).

The two main drawbacks of the Choquet integral preference model are the great number of

parameters that have to be elicited in order to apply it and the requirement that criteria are on a

common scale.

Regarding the elicitation of the preference parameters, the DM can provide direct or indirect pref-

erence information [3, 31]. The DM gives direct preference information when she provides directly

all the values of the parameters present in the model. The DM supplies indirect preference informa-

tion (see e.g. [22]) when she provides some preferences between alternatives or comparisons about

importance and interaction of criteria from which compatible preference parameters can be inferred.

With respect to the Choquet integral preference model, the inference of the preference parameters is

really challenging, but several methodologies have been proposed in literature [14, 31].

Concerning the common scale problem, let us mention that the Choquet integral preference model

requires that evaluations on different criteria have to be compared between them. For example, in

the considered car decision problem, the DM should be able to compare the speed of a car with its

acceleration estimating, for example, if the maximum speed of 200 km/h is as valuable as a price

of 35, 000 e. This problem is quite well known in literature (see e.g. [32]) but, to the best of our

knowledge, very few contributions tackled the problem (e.g. [3] proposes a search of a common scale

through Monte Carlo simulation). In this paper, we shall deal with these two drawbacks of the

Choquet integral preference model.

The elicitation of the preference parameters has been already taken into account in our previous

work [1], where the SMAA-Choquet methodology has been presented. In that paper, we have applied

the Stochastic Multiobjective Acceptability Analysis (SMAA) (for a survey on SMAA methods see

[40]) to explore the whole space of parameters compatible with some preference information provided

by the DM related to the importance and the interaction of criteria.

The contributions of this paper are threefold:

1. SMAA-Choquet has been extended by taking into account also the DM’s preference information

regarding the pairwise comparison of some reference alternatives,

2. SMAA-Choquet has been also enhanced by including the possibility that the evaluations on

criteria may be given imprecisely, that is the evaluation of each alternative on the considered
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criteria is not given punctually but as interval of possible evaluations,

3. SMAA-Choquet includes a procedure aiming to obtain a common scale for all considered criteria

permitting, therefore, to apply the Choquet integral preference model.

The paper is organized as follows. In Section 2, we introduce the Choquet integral preference

model together with a didactic example. In Section 3, we briefly describe the SMAA methods. Our

simulation based approach, proposed in the context of the Choquet integral preference model, is

introduced in Section 4 and illustrated by two examples in Section 5. Some conclusions and future

directions of research are presented in Section 6.

2 The Choquet integral preference model

Very often the aggregation of the evaluations of an alternative on the considered criteria is done by

means of the simplest additive value function, i.e. the weighted sum. It is obtained considering a

vector of non-negative weights w = [w1, ..., wn] (one for each criterion in G), that permits to assign

a value U(ak) = w1g1(ak) + . . . + wngn(ak) to the alternative ak ∈ A. Notice that, in the rest of the

paper, we shall use the terms criterion gi and criterion i interchangeably.

The weighted sum has several limitations to represent preferences (see e.g. [12, 26]) as illustrated

by the following didactic example inspired by [17].

Example The dean of a technical school wants to evaluate students s1, s2 and s3 whose marks on

Mathematics and Physics are shown in Table 1.

Table 1: Students’ evaluations on Mathematics and Physics given on a [0, 30] scale

Math Phy

s1 26 30

s2 28 28

s3 30 26

Since students good in Mathematics are in general good also in Physics, if there is a good mark

in one of the two subjects, one can expect a good mark also in the other subject. Consequently, a

student good in Mathematics and in Physics is of course appreciated, but the dean does not want to

overvalue students having good marks in both subjects. Thus, for the dean, students s1 and s3 are

preferred to student s2.
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In this case, we can say that there is a negative interaction (redundancy) between Mathematics and

Physics. To represent the dean’s preferences by means of the weighted sum model, the following

inequalities should be satisfied:

wMath · 26 + wPhy · 30 > wMath · 28 + wPhy · 28,

wMath · 30 + wPhy · 26 > wMath · 28 + wPhy · 28,

where wMath and wPhy are the weights of Mathematics and Physics, respectively. It is easily verified

that the above inequalities are contradictory since:

wMath · (−2) + wPhy · 2 > 0 > wMath · (−2) + wPhy · 2

Thus, we have to conclude that, due to the redundancy between Mathematics and Physics, the

weighted sum is not able to represent the dean’s preferences.

In order to represent preferences in case of interaction between criteria, one has to use some

preference model more general than the weighted sum. This is the case of the non-additive integrals

among which the most well-known is the Choquet integral [6]. It proposes an extension of the

weighted sum model to the case of interacting criteria and it is based on the concept of capacity

(fuzzy measure) that assigns a weight to each subset of criteria. More precisely, denoting by 2G the

power set of G (i.e. the set of all subsets of G), the function µ : 2G → [0, 1] is called a capacity (fuzzy

measure) on 2G if the following properties are satisfied:

1a) µ(∅) = 0 and µ(G) = 1 (boundary conditions),

2a) ∀ S ⊆ T ⊆ G, µ(S) ≤ µ(T ) (monotonicity condition).

Intuitively, for all T ⊆ G, µ(T ) can be interpreted as the comprehensive importance of the criteria

from T considered as a whole.

Example (Continuation). To represent the importance of Mathematics and Physics taken singu-

larly and considered together, one can set µ1({Math}) = µ1({Phy}) = 0.6 and µ1({Math, Phy}) =

1. The difference µ1({Math, Phy}) − µ1({Math}) − µ1({Phy}) = −0.2 represents the negative

interaction between Mathematics and Physics since it is the difference between the importance of

Mathematics and Physics considered as a whole (µ1({Math, Phy})), and the sum of their importance

when they are considered singularly (µ1({Math}) + µ1({Phy})).

If there is no interaction between the considered criteria, we have µ(S ∪ T ) = µ(S) + µ(T ), for

any S, T ⊆ G such that S ∩ T = ∅ and the capacity is called additive. If a capacity is additive
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then µ(T ) =
∑

i∈T

µ({i}) and, consequently, the values µ({1}), µ({2}) . . . , µ({n}) (corresponding to

the weights wi of the weighted sum model), are sufficient to rebuild the whole capacity µ.

Whenever the capacity is non-additive, in general, one has to assess 2|G|− 2 values µ(T ), ∅ ⊂ T ⊂ G,

since the values µ(∅) = 0 and µ(G) = 1 are already known.

If the criteria from G are interacting and their importance is represented by a capacity µ, the

weighted sum can be extended through the Choquet integral [6] that assigns the following value to

each ak ∈ A:

Cµ(ak) =
n

∑

i=1

[

g(i)(ak) − g(i−1)(ak)
]

µ (Ni) ,

where (·) stands for a permutation of the indices of criteria such that g(1)(ak) ≤ . . . ≤ g(n) (ak) ,

Ni = {(i), . . . , (n)} and g(0) = 0.

A meaningful and useful reformulation of the capacity µ and of the Choquet integral can be

obtained by means of the Möbius representation of the capacity µ which is a function m : 2G → R

[35] defined as follows:

µ(S) =
∑

T⊆S

m(T ).

Note that if S is a singleton, i.e. S = {i} with i = 1, 2, . . . , n, then µ({i}) = m({i}) while, if S is a

couple (non-ordered pair) of criteria, i.e. S = {i, j}, then µ({i, j}) = m({i}) + m({j}) + m({i, j}).

The Möbius representation m(S) can be obtained from µ(S) as follows:

m(S) =
∑

T⊆S

(−1)|S−T |µ(T ).

In terms of Möbius representation, properties 1a) and 2a) are, respectively, restated as:

1b) m(∅) = 0,
∑

T⊆G

m(T ) = 1,

2b) ∀ i ∈ G and ∀R ⊆ G \ {i} , m({i}) +
∑

T⊆R

m(T ∪ {i}) ≥ 0.

The Choquet integral may be reformulated in terms of Möbius representation as follows:

Cµ(ak) =
∑

T⊆G

m(T ) min
i∈T

gi (ak) . (1)
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Example (Continuation). The value assigned to student s1 by the Choquet integral in terms of

the capacity µ1 is the following:

Cµ1
(s1) = gMath(s1) · µ1({Math, Phy}) + (gPhy(s1) − gMath(s1)) · µ1({Phy}) = 28.4.

This value can be explained as follows. The mark gMath(s1) = 26 is attained on both subjects and,

therefore, it is multiplied by µ1({Math, Phy}), i.e. the weight assigned to Mathematics and Physics

considered as a whole. The mark gPhy(s1) = 28 is attained on Physics only and, consequently,

the difference gPhy(s1) − gMath(s1) is multiplied by µ1({Phy}), i.e. the weight assigned to Physics

considered singularly. Analogously, we get Cµ1
(s2) = 28 and Cµ1

(s3) = 28.4, so that Cµ1
(s1) >

Cµ1
(s2) and Cµ1

(s3) > Cµ1
(s2). Therefore, we can conclude that the Choquet integral is able to

represent the dean’s preferences.

Observe also that the Möbius representation m1 of the capacity µ1 gives m1({Math}) = m1({Phy}) =

0.6 and m1({Math, Phy}) = −0.2 and, consequently, the Choquet integral related to student s1 can

be reformulated as follows in terms of the Möbius representation m1:

Cµ1
(s1) = gMath(s1) ·m1({Math}) + gPhy(s1) ·m1({Phy}) + min(gMath(s1), gPhy(s1)) ·m1({Math, Phy}) = 28.4

Considering its formulation in terms of Möbius representation, the Choquet integral can be explained

as follows. The marks in Mathematics and Physics are multiplied by m1({Math}) and m1({Phy})

representing, in some form, the weights related to their additive components. However, the value so

obtained has to be corrected by adding min(gMath(s1), gPhy(s1)) ·m1({Math, Phy}) representing the

negative interaction between Mathematics and Physics. The Choquet integral related to students s2

and s3 can be analogously reformulated in terms of the Möbius representation m1.

With the aim of reducing the number of parameters to be elicited, in [13] the concept of k-

additive capacity has been introduced. A capacity is called k-additive if m(T ) = 0 for T ⊆ G such

that |T | > k.

Within an MCDA context, it is easier and more straightforward to consider 2-additive capacities

since, in such case, the DMs have to express a preference information on positive and negative inter-

actions between two criteria, neglecting more complex interactions among three, four and generally

k ≤ n criteria. Moreover, by considering 2-additive measures the computational issue of determining

the parameters is weakened, since only n +
(

n

2

)

coefficients have to be assessed; specifically, in terms

of Möbius representation, a value m({i}) for every criterion i and a value m({i, j}) for every couple

of criteria {i, j}. For all these reasons, in the following we shall consider 2-additive capacities only.

However, the methodology we are presenting can be applied to any capacity.
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The value that a 2-additive capacity µ assigns to a set S ⊆ G can be expressed in terms of the

Möbius representation as follows:

µ(S) =
∑

i∈S

m ({i}) +
∑

{i,j}⊆S

m ({i, j}) , ∀S ⊆ G.

With regard to 2-additive capacities, properties 1b) and 2b) have, respectively, the following

expressions:

1c) m (∅) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

2c)















m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅.

In this case, the Choquet integral assigns to ak ∈ A the following value:

Cµ(ak) =
∑

i∈G

m ({i}) gi (ak) +
∑

{i,j}⊆G

m ({i, j}) min{gi (ak) , gj (ak)}. (2)

Since, in this context, the importance of a criterion does not depend only on its importance as a

single but also on its contribution to each coalition of criteria to which it participates, we recall the

definitions of the importance of a criterion and of the interaction index for a couple of criteria.

Taking into account the Möbius representation of a 2-additive capacity µ, the importance of criterion

i ∈ G, expressed by the Shapley value [36], can be written as follows:

ϕ ({i}) = m ({i}) +
∑

j∈G\{i}

m ({i, j})

2
.

The interaction index, expressing the sign and the magnitude of the interaction in a couple of criteria

{i, j} ⊆ G in case of a 2-additive Möbius representation of a capacity µ, is given by:

ϕ ({i, j}) = m ({i, j}) .

Example (Continuation). Capacity µ1 is trivially 2-additive and we have

ϕ ({Math}) = m1 ({Math}) +
m1 ({Math, Phy})

2
= 0.5.

Observing that ϕ ({Phy}) = 0.5 and, consequently, ϕ ({Math}) = ϕ ({Phy}), we can conclude that

the marks in Mathematics and Physics have the same importance. Moreover, the value ϕ ({Math, Phy}) =

−0.2 confirms that the two considered criteria are negatively interacting.
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3 SMAA

Stochastic Multiobjective Acceptability Analysis (SMAA) [27, 29] is a family of MCDA methods

aiming to get recommendations on the problem at hand taking into account uncertainty or imprecision

on the considered data and preference parameters. Several SMAA methods have been developed to

deal with different MCDA problems: SMAA-2 has been presented in [29] for ranking problems,

SMAA-O [28] has been introduced for multicriteria problems with ordinal criteria and SMAA-TRI

[41] for sorting problems. Other two recent contributions related to SMAA and ROR have been

presented in [24] and [25]. In the following, we shall describe SMAA-2 since, in this paper, we have

considered ranking problems only.

In SMAA-2, the most commonly used value function is the linear one:

u(ak, w) =
n

∑

i=1

wigi(ak).

In order to take into account imprecision or uncertainty, SMAA-2 considers two probability dis-

tributions fW (w) and fχ(ξ) on W and χ, respectively, where W = {(w1, . . . , wn) ∈ R
n : wi ≥

0 and
∑n

i=1 wi = 1} and χ is the evaluation space.

First of all, SMAA-2 introduces a ranking function relative to the alternative ak:

rank(k, ξ, w) = 1 +
∑

h 6=k

ρ (u(ξh, w) > u(ξk, w)) ,

where ρ(false) = 0 and ρ(true) = 1.

Then, for each alternative ak, for each evaluation of alternatives ξ ∈ χ and for each rank r = 1, . . . , l,

SMAA-2 computes the set of weights of criteria for which alternative ak assumes rank r:

W r
k (ξ) = {w ∈ W : rank(k, ξ, w) = r} .

SMAA-2 is based on the computation of the following indices:

• The rank acceptability index, which measures the variety of different parameters compatible

with the DM’s preference information giving to the alternative ak the rank r:

brk =

∫

ξ∈χ

fχ(ξ)

∫

w∈W r
k
(ξ)

fW (w) dw dξ;

brk gives the probability that alternative ak has rank k and it is within the range [0, 1].
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• The central weight vector , which describes the preferences of a typical DM giving to ak the

best position and it is defined as follows:

wc
k =

1

b1k

∫

ξ∈χ

fχ(ξ)

∫

w∈W 1(ξ)

fW (w)w dw dξ;

• The confidence factor, which is defined as the frequency of an alternative to be the preferred

one with the preferences expressed by its central weight vector and it is given by:

pck =

∫

ξ∈χ:u(ξk,w
c
k
)≥u(ξh,w

c
k
)

∀h=1,...,l

fχ(ξ) dξ.

In the following, we shall consider also the frequency that an alternative ah is weakly preferred

to an alternative ak in the space of the preference parameters (weight vectors in case of SMAA-2):

phk =

∫

w∈W

fW (w)

∫

ξ∈χ:u(ξh,w)≥u(ξk,w)

fχ(ξ)dξ dw.

Let us notice that the previous index phk is also known as pairwise winning index and it has been

introduced in [30, 42].

From a computational point of view, the multidimensional integrals defining the considered indices

are estimated by using the Monte Carlo method.

4 An extension of the SMAA method to the Choquet inte-

gral preference model

In this section, we shall present the SMAA-Choquet method putting together the Choquet integral

preference model and the SMAA methodology.

As observed in Section 2, the use of the Choquet integral in terms of Möbius representation

with a 2-additive capacity requires the evaluation of n+
(

n

2

)

parameters and in order to assess these

parameters, the DM is asked to provide some preference information in a direct or an indirect way.

Generally, the indirect preference information requires less cognitive effort from the DM, and for this

reason it is widely used in MCDA (see for example [4, 20, 22, 23]). In the following, we shall suppose

that the DM is able to provide some indirect preference information and we shall use the 2-additive

Choquet integral preference model expressed in terms of the Möbius representation.

Using the Choquet integral preference model, the DM can provide the following preference infor-

mation:
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• Comparisons related to importance and interaction of criteria:

– criterion i is at least as important as criterion j (and we shall write i % j): ϕ({i}) ≥

ϕ({j});

– criterion i is more important than criterion j (i ≻ j): ϕ({i}) > ϕ({j});

– criteria i and j have the same importance (i ∼ j): ϕ({i}) = ϕ({j});

– criteria i and j are synergic: ϕ({i, j}) > 0;

– criteria i and j are redundant: ϕ({i, j}) < 0.

• Comparisons between couples or quadruples of alternatives:

– alternative ak is at least as good as alternative ah (ak % ah): Cµ(ak) ≥ Cµ(ah);

– alternative ak is preferred to alternative ah (ak ≻ ah): Cµ(ak) > Cµ(ah);

– alternative ak and ah are indifferent (ak ∼ ah): Cµ(ak) = Cµ(ah);

– alternative ak is preferred to alternative ah more than alternative as is preferred to alter-

native at ((ak, ah) ≻∗ (as, at)): Cµ(ak) − Cµ(ah) > Cµ(as) − Cµ(at);

– the difference of preference between ak and ah is the same of the difference of preference

between as and at ((ak, ah) ∼∗ (as, at)): Cµ(ak) − Cµ(ah) = Cµ(as) − Cµ(at).

Hereafter, we distinguish three sets of constraints:

• Monotonicity and boundary constraints,

m ({∅}) = 0,
∑

i∈G

m ({i}) +
∑

{i,j}⊆G

m ({i, j}) = 1,

m ({i}) ≥ 0, ∀i ∈ G,

m ({i}) +
∑

j∈T

m ({i, j}) ≥ 0, ∀i ∈ G and ∀ T ⊆ G \ {i} , T 6= ∅,



























(EMB)

• Constraints related to importance and interaction of criteria,

ϕ({i}) ≥ ϕ({j}), if i % j,

ϕ({i}) ≥ ϕ({j}) + ε, if i ≻ j,

ϕ({i}) = ϕ({j}), if i ∼ j,

ϕ({i, j}) ≥ ε, if criteria i and j are synergic with i, j ∈ G,

ϕ({i, j}) ≤ −ε, if criteria i and j are redundant with i, j ∈ G,



















































(EC)
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• Constraints related to comparisons between alternatives,

Cµ(ak) ≥ Cµ(ah), if ak % ah,

Cµ(ak) ≥ Cµ(ah) + ε, if ak ≻ ah,

Cµ(ak) = Cµ(ah) if ak ∼ ah,

Cµ(ak) − Cµ(ah) ≥ Cµ(as) − Cµ(at) + ε, if (ak, ah) ≻∗ (as, at),

Cµ(ak) − Cµ(ah) = Cµ(as) − Cµ(at), if (ak, ah) ∼∗ (as, at),



















































(EA)

where the strict inequalities used to translate the preferences have been transformed into weak

inequalities in EC and EA by adding an auxiliary variable ε taking positive values.

We shall call compatible model, a capacity whose Möbius representation satisfies the set of con-

straints EDM = EMB∪EC∪EA with a positive value of ε. Observe that EC or EA could be eventually

empty if the DM does not provide any information on importance and interaction of criteria, or com-

parison of alternatives, respectively.

In order to check if there exists at least one compatible model, one has to solve the following linear

programming problem:

max ε = ε∗ s.t.

EDM .
(3)

If EDM is feasible and ε∗ > 0, then there exists at least one model compatible with the preference

information provided by the DM. If EDM is infeasible or ε∗ ≤ 0, then one can check which is the

minimum set of constraints determining the infeasibility using one of the techniques described in

[33].

In this section, we shall describe how to obtain robust recommendations on the problem at hand

by putting together the Choquet integral preference model and the SMAA methodology that is, by

estimating the indices typical of SMAA, but considering as preference model the Choquet integral

instead of an additive value function. We shall consider the following different cases:

case 1) the evaluations on the criteria are on a common scale and they are expressed in a precise

way, that is gi(ak) ∈ R for all i and for all k,

case 2) the evaluations on criteria are on a common scale but they can be given in an imprecise

way, that is gi(ak) ∈ [αk
i , β

k
i ] with αk

i ≤ βk
i , for some i and for some k,
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case 3) the evaluations on the criteria are on different scales (for the sake of simplicity in this case

we have supposed that evaluations of alternatives on the considered criteria are given in a

precise way).

In case 1), since the evaluations on the criteria under consideration are on a common scale

and they are given in a precise way, the application of the Choquet integral depends only on a

capacity compatible with the preferences expressed by the DM. Because the set of inequalities in

EDM defines a convex set of parameters, one can use the Hit-and-Run (HAR) method in order to

sample some compatible models. The HAR sampling has been firstly introduced in [37] and recently

applied in multicriteria decision analysis in [44]. It starts from the choice of one point (the Möbius

representation of one capacity in the problem at hand) inside the polytope EDM . Since the starting

point in the HAR sampling could be whichever point inside the polytope, we can begin from the

point obtained by solving the linear optimization problem defined in (3). At each iteration, a random

direction is sampled from the unit hypersphere that, passing through the starting point, generates a

line. Finally, one point inside the segment whose extremes are the intersection of the line with the

boundaries of the polytope is sampled.

In order to illustrate the procedure, we shall provide the first two iterations of the Hit-and-Run

algorithm in a didactic example. Let us suppose we have to sample some points (x, y) inside the

region delimited by the constraints y ≤ x+ 2, y ≥ x− 2, y ≤ −x+ 2 and y ≥ −x− 2 (see Figure 1).

Chosen the starting point P and a vector belonging to the unit sphere of center (0, 0) and radius

equal to one that defines the direction d, we consider the line d1 in Figure 2 having the direction of

d and passing through the starting point P . d1 “hits” the boundaries y = x + 2 and y = −x + 2 in

the points Q1 and Q2, respectively. We then “run” along the segment Q1Q2, sampling in a uniform

way the point P1 at the first iteration. In the second iteration, the procedure continues considering

P1 as the starting point. Taking randomly a direction d, the line d2 passing through point P1 and

having the same direction of d intersects the lines y = x + 2 and y = x− 2 in the points Q3 and Q4.

Point P2 is then chosen in a uniform way inside the segment connecting Q3 and Q4 (see Figure 3).

The algorithm continues until the stopping rule (in our case the maximum number of iterations) is

satisfied.

Let us observe that at each iteration of the HAR algorithm a compatible model is sampled and

therefore stored. Consequently, by applying the Choquet integral preference model with each of the

stored models, one can get one different ranking and, in the end, can estimate the indices typical of

the SMAA methodology.
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Figure 1: Hit-and-Run example
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Figure 3: Second iteration

In case 2), the application of the Choquet integral preference model does not depend on the

sampled capacity only, but also on the evaluations of the alternatives at hand, because while con-

straints in EC and in EMB are not dependent on the alternatives’ evaluations, constraints in EA are

dependent on these evaluations. Consequently, we have to distinguish between the case in which the

DM does not provide any preference in terms of comparison between alternatives (EA = ∅) from the

case in which the DM expresses such type of preference (EA 6= ∅).

If EA = ∅, the set of constraints EDM defines a convex set and therefore one can sample compatible

models by applying the HAR method as described in the first case. The only difference with respect

to case 1) is that, in order to apply the Choquet integral preference model, one has to sample an

evaluation matrix M (whose element Mki is taken in a random way inside the interval [αk
i , β

k
i ]) for each

stored capacity. After applying the Choquet integral preference model with the considered matrices

and sampled capacities, one can compute the corresponding rankings and therefore estimating the

SMAA indices.

Differently from the previous case, at each sampled evaluation matrix M corresponds a different

set of constraints EDM . Consequently, one can not apply the HAR method to sample the compatible

capacities from EA. Besides, sampled an evaluation matrix M , it is also possible that the correspond-

ing set of constraints EDM is infeasible. For this reason, after that an evaluation matrix has been

sampled, one has to check if the set EDM is feasible and, in this hypothesis, sampling a capacity com-

patible with the DM’s preferences. Also in this case after storing the different rankings obtained by

applying the Choquet integral with the sampled evaluations matrices and the corresponding sampled

capacities, one can compute the SMAA indices.
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A typical example of case 3) can be the evaluation of a sport car, where criteria such as maximum

speed, acceleration, price, comfort can be considered and each of them has a different scale. In this

case, one can not apply directly the Choquet integral to aggregate the preferences of the DM since,

as remarked in the introduction, a requisite of the method is that all considered criteria are on a

common scale.

In order to cope with this drawback, we propose to construct a common scale with a procedure

composed of the following steps for each criterion gi:

• sampling uniformly from the interval [0, 1], l′ different real numbers x1, . . . , xl′ supposing that

the different evaluations on gi are l′, with l′ ≤ l,

• ordering the l′ numbers in an increasing way, xi(1) < . . . < xi(l′),

• assigning xi(h) to the alternatives having the h-th evaluation, in an increasing order with respect

to the DM’s preferences on gi.

Supposing to deal with the aforementioned car decision problem, and looking at the evaluations

of the considered cars on criterion acceleration shown in Table 2, we proceed as follows:

• Because the evaluations of the 10 alternatives on criterion acceleration are all different, we

sample 10 different real numbers from the interval [0, 1]. For example, x1 = 0.81, x2 = 0.90,

x3 = 0.12, x4 = 0.91, x5 = 0.63, x6 = 0.09, x7 = 0.27, x8 = 0.54, x9 = 0.95, x10 = 0.96.

• We order the 10 numbers in an increasing way: x(1) = 0.09 < x(2) = 0.12 < x(3) = 0.27 < x(4) =

0.54 < x(5) = 0.63 < x(6) = 0.81 < x(7) = 0.90 < x(8) = 0.91 < x(9) = 0.95 < x(10) = 0.96.

• Since, in this example, acceleration has a decreasing direction of preference (the lower the

evaluation on the criterion, the better the alternative is) we assign value x(1) = 0.09 to SEAT

Ibiza ST 1.2, value x(2) = 0.12 to SKODA Fabia 1.2 and so on (see the third column of Table

2).

The values xi(r), i = 1, . . . , n and r = 1, . . . , l′, become the evaluations of the considered al-

ternatives on the different criteria. In this way, evaluations on all criteria are expressed on the

same common scale and therefore, having a capacity compatible with the DM’s preferences, one can

compute the Choquet integral of all alternatives.

At this point, since the sampling of a compatible model will depend on the chosen common

scale only, if EA 6= ∅ (the DM provides some preference on the considered alternatives), one can
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Table 2: Car evaluation with respect to the criterion acceleration (expressed in seconds necessary to

reach 100 Km/h starting from 0 Km/h) and the corresponding scale

Cars Acceleration 0/100 km/h Scale value

PEUGEOT 208 1.6 8V 10.9 0.96

Citroen C3 13.5 0.54

FIAT 500 0.9 11 0.95

SKODA Fabia 1.2 14.2 0.12

LANCIA Ypsilon 5p 11.4 0.90

RENAULT Clio 1.5 dCi 90 11.3 0.91

SEAT Ibiza ST 1.2 14.6 0.09

ALFA ROMEO MiTo 1.3 12.9 0.63

TOYOTA Yaris 1.5 11.8 0.81

VOLKSWAGEN Polo 1.2 13.9 0.27

proceed as already described in case 2), but replacing the sampling of an evaluation matrix with the

construction of a common scale. The only difference with case 2) is that the DM could be interested

in discovering which is the most discriminant common scale. With this aim, one can proceed as

follows:

• Sampling a certain number of possible common scales S1, . . . , Siter, considering the correspond-

ing feasible sets of constraints EDM
1 , . . . , EDM

iter and denoted by ε1, . . . , εiter, the solutions of the

linear programming problems

max ε s.t.

EDM
1











, . . . . . . . . . . . . ,
max ε s.t.

EDM
iter











; (4)

the most discriminant scale is the scale Sk such that εk = max {ε1, . . . , εiter}.

After obtaining the most discriminant common scale, the decision aiding process can continue in

one of the following ways:

- applying the Choquet integral preference model after asking the capacities directly to the DM,

- eliciting one (arbitrary) capacity compatible with the DM’s preference information [31],

- considering the whole set of capacities compatible with the DM’s preference information using

NAROR [4],
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- applying the simulation techniques proposed in case 1) since the common scale’s values become

the evaluations of the alternatives on the considered criteria.

5 Some examples

The whole methodology presented in the previous section will be illustrated by two didactic examples.

In the following, we shall consider uniform probability distributions fW and fχ, respectively, on W

and χ.

5.1 Considering imprecision in the evaluations on considered criteria

Let us consider a set of 18 alternatives evaluated on the basis of 4 criteria, G = {g1, g2, g3, g4}, as

shown in Table 3. We suppose that the evaluations of considered alternatives on each criterion are

integer numbers within an interval (for example, the evaluation of a1 on criterion g1 can be 14, 15 or

16), but this is not a specific requirement for our model i.e., in general, we can sample values from

the whole interval. We can consider this as a specific probability distribution fχ(ξ) concentrating

uniformly the mass only on the integers in the interval of evaluations on considered criteria.

Table 3: Imprecise evaluations of alternatives on considered criteria

Alternatives

Criteria a1 a2 a3 a4 a5 a6 a7 a8 a9

g1 [14,16] [6,8] [17,19] [8,10] [11,13] [7,9] [13,15] [7,9] 3

g2 [11,13] [7,9] [7,9] [15,17] 5 3 [18,20] [12,14] [16,18]

g3 [9,11] [13,15] 4 [3,5] [13,15] [6,9] 5 [14,15] 2

g4 [6,9] [15,17] [11,13] [15,17] [13,15] [18,20] [9,11] 6 [13,15]

Criteria a10 a11 a12 a13 a14 a15 a16 a17 a18

g1 4 [15,17] [7,9] [16,18] [7,9] [18,20] [11,13] [13,15] [8,10]

g2 [18,20] 7 [10,12] [11,13] [6,8] [6,9] 4 [10,12] [12,14]

g3 [7,9] [13,15] 5 [5,7] [6,9] [3,5] [14,16] [11,13] [11,13]

g4 [8,10] [9,11] [18,20] 8 [18,20] [11,13] [12,15] [8,10] [5,7]

We shall take into account the following preference information in terms of importance and

interaction of criteria and comparisons between alternatives:

• ϕ({g1} > ϕ({g2}), ϕ({g3} > ϕ({g4}),

• ϕ({g1, g2}) > 0, ϕ({g2, g3}) > 0, ϕ({g2, g4}) < 0,
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• a16 ≻ a2, a3 ≻ a14 and a13 ≻ a8.

According to [43], we perform the Hit-and-Run procedure for 10, 000 iterations.

For each iteration, we sample an evaluation matrix and we check if it is compatible with the preference

information provided by the DM. In this case, we compute the Choquet integral for each alternative

obtaining a complete ranking.

At the end of all iterations, we compute the rank acceptability index brk for each k, r = 1, . . . , l and

the Möbius representation of the central capacity for each alternative ak that can get the first rank

at least once, as shown, respectively, in Tables 4 and 5. In particular, in Table 4 we observe that

alternatives a1, a3, a7, a11, a13, a15, a16 and a17 can be ranked first. a17 has reached the first position

more than all other alternatives (b117 = 25.39) and a9 is instead the alternative that is almost always

in the last position in the obtained rankings (b189 = 99.52).

Table 4: Rank acceptability indices taking into account imprecise evaluations of alternatives on

considered criteria, preference information in terms of importance and interaction of criteria and

comparisons between alternatives

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k b11k b12k b13k b14k b15k b16k b17k b18k

a1 19.69 23.35 22.59 15.98 8.81 5.08 2.51 1.08 0.63 0.21 0.06 0 0.01 0 0 0 0 0

a2 0 0.02 0.03 0.06 0.34 1.52 4.23 7.25 11.2 15.38 17.62 18.27 12.54 7.19 3.76 0.55 0.04 0

a3 0.59 1.2 2.63 3.16 6.11 9.72 13.18 13.16 13.09 12.37 11.4 9.73 2.84 0.73 0.06 0.03 0 0

a4 0 0.01 0.01 0.07 0.11 0.43 1.27 2.38 3.16 4.9 6.28 8.5 14.2 21.1 24.08 11.69 1.81 0

a5 0.6 1.64 3.62 6.82 10.98 12.48 12.82 12.96 12.69 9.64 7.66 4.64 2.31 0.9 0.23 0.01 0 0

a6 0 0 0 0 0.01 0 0.03 0.04 0.03 0.18 0.32 1.05 2.2 5.32 10.87 40.02 39.47 0.46

a7 24.68 15.79 15.99 18 10.99 6.34 3.14 2.35 1.49 0.72 0.35 0.07 0.06 0.03 0 0 0 0

a8 0 0 0.08 0.43 1.77 7.96 11.39 13.81 12.24 12.92 12.12 9.81 7.74 5.29 3.45 0.97 0.02 0

a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.47 99.52

a10 0 0 0 0 0 0 0.01 0 0.02 0.02 0.12 0.2 0.66 2.32 6.87 32.5 57.26 0.02

a11 23.82 21.83 17.88 15.05 9.89 5.76 3.6 1.69 0.37 0.05 0.06 0 0 0 0 0 0 0

a12 0 0 0.01 0 0.01 0.11 0.25 0.64 1.85 3.35 5.44 9.08 16.84 26.49 27.61 7.86 0.46 0

a13 2.27 6.37 10.45 15.96 24.34 17.15 11.08 6.36 3.79 1.47 0.57 0.15 0.03 0.01 0 0 0 0

a14 0 0 0 0 0 0.05 0.34 1.31 3.06 5.57 8.87 13.99 24.1 20.09 17.52 4.76 0.34 0

a15 2.49 4 4.99 7.5 9.91 13.23 12.67 10.32 8.65 6.92 6.43 5.88 3.27 2.18 1.05 0.4 0.11 0

a16 0.47 1.16 1.65 2.9 5.14 9.15 12.77 16.41 16.85 14.64 10.26 5.19 2.36 1 0.05 0 0 0

a17 25.39 24.59 19.83 12.91 7.95 4.45 2.96 1.19 0.58 0.13 0.02 0 0 0 0 0 0 0

a18 0 0.04 0.24 1.16 3.64 6.57 7.75 9.05 10.3 11.53 12.42 13.44 10.84 7.35 4.45 1.2 0.02 0

Looking at the second best alternative, one can be in doubt among a11, a7 and a1. In fact, on one

side a7 has a first rank acceptability index greater than the other two alternatives (b17 = 24.68%).

On the other side, looking at the pairwise winning indices shown in Table 6, one can observe that
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Table 5: Möbius representation of central capacities for alternatives taking into account imprecise

evaluations of alternatives on considered criteria, preferences on importance and interaction of criteria

and comparisons between alternatives

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a1 0.31 0.19 0.18 0.19 0.10 0.03 0.00 0.10 -0.10 -0.00

a3 0.41 0.16 0.25 0.21 0.08 -0.11 0.02 0.08 -0.08 -0.03

a5 0.29 0.16 0.20 0.22 0.07 0.03 0.04 0.07 -0.11 0.03

a7 0.32 0.21 0.21 0.19 0.11 -0.04 0.01 0.09 -0.09 -0.01

a11 0.30 0.17 0.16 0.19 0.08 0.10 0.01 0.08 -0.09 -0.00

a13 0.34 0.19 0.21 0.19 0.11 -0.04 0.00 0.09 -0.10 -0.01

a15 0.39 0.17 0.25 0.21 0.09 -0.10 0.02 0.09 -0.09 -0.03

a16 0.32 0.16 0.25 0.21 0.05 -0.04 0.05 0.06 -0.11 0.05

a17 0.29 0.19 0.17 0.19 0.10 0.07 0.00 0.10 -0.10 -0.00

a11 and a1 are weakly preferred to all other alternatives with a frequency of at least 47.04% and

44.09%, respectively (vs the 40.20% of a7) and both of them are preferred to a7 more frequently

than the viceversa. At the same time, a9 can be considered surely the worst alternative because all

alternatives are weakly preferred to it with a frequency at least equal to the 99.54%.

Computing the Möbius representation of the barycenter of compatible capacities shown in Table

7 and applying the Choquet integral to the average evaluation matrix we get the following ranking

of the considered alternatives:

a17 ≻ a11 ≻ a1 ≻ a7 ≻ a13 ≻ a15 ≻ a5 ≻ a3 ≻ a16 ≻ a8 ≻ a18 ≻ a2 ≻ a14 ≻ a12 ≻ a4 ≻ a6 ≻ a10 ≻ a9.

5.2 An example with the criteria expressed on different scales

In this section, we deal with a decision making problem in which the evaluations of alternatives on

considered criteria are expressed on heterogeneous scales.

From the city-car segment market, we select ten cars evaluated on the basis of the following criteria:

price (in Euro), acceleration (0/100 km/h in seconds), maximum speed (in km/h) and consumption

(in l/100km) (see Table 8). In this example, we shall suppose that price, acceleration and con-

sumption have a decreasing direction of preference (the lower the evaluation of an alternative on the

criterion, the better the alternative is on the considered criterion), while criterion maximum speed

has an increasing direction of preference (the higher the evaluation of an alternative on a criterion,

the better the alternative is on the considered criterion). Let us notice that, in some cases, criteria
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Table 6: Pairwise winning indices taking into account imprecise evaluations of alternatives on con-

sidered criteria, preferences on importance and interaction of criteria and comparisons between al-

ternatives

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18

a1 0.00 99.09 92.23 99.70 91.39 99.98 55.80 98.53 100.00 100.00 47.59 99.88 80.36 99.85 85.65 94.32 44.09 99.16

a2 0.91 0.00 29.52 78.07 14.31 99.20 2.96 37.69 99.99 99.33 0.25 83.54 6.58 77.66 23.08 0.00 0.39 45.69

a3 7.77 70.48 0.00 93.07 43.69 99.57 8.24 61.99 100.00 99.87 8.77 95.18 18.31 100.00 35.82 53.00 8.02 66.50

a4 0.30 21.93 6.93 0.00 9.17 86.72 0.23 16.44 100.00 95.37 0.45 51.96 0.97 42.25 6.56 11.77 0.23 21.00

a5 8.61 85.69 56.31 90.83 0.00 99.99 15.78 65.84 100.00 99.85 2.72 94.92 27.39 94.32 46.07 62.74 5.17 73.95

a6 0.02 0.80 0.43 13.28 0.01 0.00 0.14 2.68 99.59 62.13 0.00 9.16 0.13 4.64 0.78 0.04 0.00 2.85

a7 44.20 97.04 91.76 99.77 84.22 99.86 0.00 96.75 100.00 100.00 43.89 99.73 76.56 99.37 84.76 90.05 40.20 96.87

a8 1.47 62.31 38.01 83.56 34.16 97.32 3.25 0.00 100.00 99.93 2.64 86.11 0.00 79.90 29.48 42.28 1.66 58.17

a9 0.00 0.01 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a10 0.00 0.67 0.13 4.63 0.15 37.87 0.00 0.07 99.80 0.00 0.00 4.19 0.00 3.89 0.28 0.19 0.00 0.19

a11 52.41 99.75 91.23 99.55 97.28 100.00 56.11 97.36 100.00 100.00 0.00 99.94 77.93 99.96 84.83 97.71 47.04 98.97

a12 0.12 16.46 4.82 48.04 5.08 90.84 0.27 13.89 100.00 95.81 0.06 0.00 0.60 39.11 5.38 7.14 0.04 17.50

a13 19.64 93.42 81.69 99.03 72.61 99.87 23.44 100.00 100.00 100.00 22.07 99.40 0.00 99.07 69.73 82.77 18.51 91.79

a14 0.15 22.34 0.00 57.75 5.68 95.36 0.63 20.10 100.00 96.11 0.04 60.89 0.93 0.00 7.73 9.83 0.05 24.04

a15 14.35 76.92 63.57 93.44 53.93 99.22 15.24 70.52 100.00 99.72 15.17 94.62 30.27 92.27 0.00 63.15 14.14 72.99

a16 5.68 100.00 47.00 88.23 37.26 99.96 9.95 57.72 100.00 99.81 2.29 92.86 17.23 90.17 36.85 0.00 4.06 65.09

a17 55.82 99.61 91.98 99.77 94.83 100.00 59.80 98.34 100.00 100.00 52.96 99.96 81.49 99.95 85.86 95.94 0.00 99.46

a18 0.84 54.31 33.50 79.00 26.05 97.15 3.13 41.83 100.00 99.81 1.03 82.50 8.21 75.96 27.01 34.91 0.54 0.00

Table 7: Möbius representation of the barycenter of the compatible capacities taking into account

interval evaluations of alternatives on considered criteria, preference information on importance and

interaction of criteria and comparisons between alternatives

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.31 0.18 0.19 0.19 0.097 0.034 0.008 0.091 -0.08 -0.014

are non monotonic with respect to the preferences of the DM. This means that one can not state

that the criterion has a decreasing or an increasing direction of preference.

Let suppose that the DM supplies the following preference information in terms of importance

and interaction of criteria as well as in terms of comparisons between alternatives:

• ϕ({g1}) > ϕ({g2}), ϕ({g4}) > ϕ({g3}),

• ϕ({g3, g4}) > 0, ϕ({g2, g3}) < 0.

• a5 ≻ a1, a7 ≻ a6, a2 ≻ a3,

As explained in Section 4, at each iteration we sample a common scale, and, if the set of constraints

EDM is feasible, then we check if there exists a capacity compatible with these constraints. Let us
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Table 8: Evaluation matrix

Cars Price Acceleration Max speed Consumption

Euro 0/100 km/h km/h l/100km

PEUGEOT 208 1.6 8V 17,800 10.9 185 3.8

e-HDi 92 CV Stop&Start 3p. Allure

Citroen C3 15,750 13.5 163 3.8

1.4 HDi 70 Seduction

FIAT 500 0.9 15,050 11 173 4

TwinAir Turbo Street

SKODA Fabia 1.2 15,260 14.2 172 3.4

TDI CR 75 CV 5p. GreenLine

LANCIA Ypsilon 5p 16,300 11.4 183 3.8

1.3 MJT 95 CV 5p. S&S Gold

RENAULT Clio 1.5 dCi 90 16,050 11.3 176 4

CV 3p. Dynamique

SEAT Ibiza ST 1.2 15,700 14.6 173 3.4

TDI CR Ecomotive

ALFA ROMEO MiTo 1.3 17,500 12.9 174 3.5

JTDm 85 CV S&S Progression

TOYOTA Yaris 1.5 17,800 11.8 165 3.2

Hybrid 5p. Lounge

VOLKSWAGEN Polo 1.2 17,060 13.9 173 3.4

TDI 5p. BlueMotion 89g

notice that since the DM has provided some preference in terms of comparison between alternatives,

the set of constraints EDM will be dependent on the sampled scale.

At the end of all the iterations, we shall get the rank acceptability indices, the Möbius representations

of the central capacities for each alternative and the preference matrix shown respectively in Tables

10, 11 and 12 in the Appendix.

In Table 10, we observe that car a4 is the most preferred by the DM (b14 = 55.51%) followed by a7,

while a6 is most frequently the least preferred car (b106 = 53.04%) and a1, a2, a3 and a6 can never

arrive first. Table 11 gives the Möbius representations of the central capacities ranking considered

alternatives in the first position at least once, while from Table 12, giving the frequency of the

weak preference between pairs of alternatives, we observe that a4 is weakly preferred to all other

alternatives with a frequency at least equal to 67.71%.

Since there are different common compatible scales, we propose the most discriminant common

scale, presented in Table 9, to the DM.
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Table 9: Evaluations of alternatives on considered criteria expressed on the most discriminating

common scale

Alt Price Acceleration Max speed Consumption

a1 0.1834 0.7290 0.8208 0.5723

a2 0.5870 0.4023 0.2107 0.5723

a3 0.8663 0.6981 0.4427 0.0496

a4 0.8567 0.1268 0.4234 0.7090

a5 0.5613 0.5854 0.6979 0.5723

a6 0.5721 0.6626 0.5906 0.0496

a7 0.7443 0.0569 0.4427 0.7090

a8 0.3115 0.4438 0.5717 0.6015

a9 0.1834 0.5816 0.3944 0.8207

a10 0.4113 0.3501 0.4427 0.7090

After the DM accepts the common scale, we apply SMAA sampling capacities compatible with the

preference information provided by the DM, computing the rank acceptability indices, the Möbius

representations of the central capacities and the preference matrix displayed, respectively, in Tables

13, 14 and 16 in the Appendix. Applying the Choquet integral with respect to the barycenter of the

compatible capacities whose Möbius representation are shown in Table 15, and considering the most

discriminating common scale we get the following ranking of the considered alternatives:

a5 ≻ a4 ≻ a7 ≻ a1 ≻ a10 ≻ a8 ≻ a2 ≻ a9 ≻ a3 ≻ a6.

6 Conclusions

In this paper, we have combined the Stochastic Multiobjective Acceptability Analysis (SMAA) to

the Choquet integral preference model extending a work already published by the authors [1]. We

have proposed to explore the space of the parameters compatible with some preference information

provided by the DM using SMAA. In particular, we have considered the DM’s preference information

not only in terms of relative importance of criteria and interaction between them, but differently

from [1], also in terms of pairwise comparison between alternatives and comparisons of intensity of

preferences between pairs of alternatives. Moreover, again differently from [1], we have considered

also imprecise evaluations of alternatives on the considered criteria.

Finally, we have proposed a methodology to construct the common scale required by the Choquet
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integral; this is very useful in case the criteria for the decision problem at hand are defined on different

scales. Such aspect of the methodology we are proposing constitutes another original contribution

with respect to [1]. We have provided some didactic examples in which the proposed methodology

has been applied. We envisage the following future developments:

• application of SMAA methodology to some extensions of the classical Choquet integral, e.g.

the bipolar Choquet integral [15, 16], the level dependent Choquet integral [19], the robust

Choquet integral [21];

• application of the SMAA methodology to the Choquet integral in presence of hierarchy of

criteria [2] within the so called multiple criteria hierarchy process [8].
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[25] M. Kadziński and T. Tervonen. Stochastic ordinal regression for multiple criteria sorting prob-

lems. Decision Support Systems, 55(11):55–66, 2013.

[26] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value tradeoffs.

J. Wiley, New York, 1976.

[27] R. Lahdelma, J. Hokkanen, and P. Salminen. SMAA - Stochastic Multiobjective Acceptability

Analysis. European Journal of Operational Research, 106(1):137–143, 1998.

[28] R. Lahdelma, K. Miettinen, and P. Salminen. Ordinal criteria in stochastic multicriteria accept-

ability analysis (SMAA). European Journal of Operational Research, 147(1):117–127, 2003.

[29] R. Lahdelma and P. Salminen. SMAA-2: Stochastic Multicriteria Acceptability Analysis for

group decision making. Operations Research, 49(3):444–454, 2001.

[30] P. Leskinen, J. Viitanen, A. Kangas, and J. Kangas. Alternatives to incorporate uncertainty

and risk attitude in multicriteria evaluation of forest plans. Forest Science, 52(3):304–312, 2006.

25



[31] J.L. Marichal and M. Roubens. Determination of weights of interacting criteria from a reference

set. European Journal of Operational Research, 124(3):641–650, 2000.

[32] F. Modave and M. Grabisch. Preference representation by the Choquet integral: The commen-

surability hypothesis. Proceedings of the Seventh International Conference IPMU Paris, July

610, 1998, pages 164–171, 1998.

[33] V. Mousseau, J.R. Figueira, L. Dias, C. Gomes da Silva, and J. Climaco. Resolving inconsisten-

cies among constraints on the parameters of an MCDA model. European Journal of Operational

Research, 147(1):72–93, 2003.

[34] B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht, 1996.

[35] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

[36] L.S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors, Con-

tributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton,

1953.

[37] R.L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions. Operations Research, 32:1296–1308, 1984.

[38] T. Stewart. Dealing with Uncertainties in MCDA. In J. Figueira, S. Greco, and M. Ehrgott,

editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 445–460. Springer,

Berlin, 2005.

[39] M. Sugeno. Theory of fuzzy integrals and its applications. Tokyo institute of Technology, 1974.

[40] T. Tervonen and J.R. Figueira. A survey on stochastic multicriteria acceptability analysis

methods. Journal of Multi-Criteria Decision Analysis, 15(1-2):1–14, 2008.

[41] T. Tervonen, J.R. Figueira, R. Lahdelma, J. Almeida Dias, and P. Salminen. A stochastic

method for robustness analysis in sorting problems. European Journal of Operational Research,

192(1):236–242, 2009.

[42] T. Tervonen, J.R. Figueira, R. Lahdelma, and P. Salminen. SMAA-III: A simulation-based

approach for sensitivity analysis of ELECTRE III. In Real-Time and Deliberative Decision

Making, pages 241–253. Springer, 2009.

26



[43] T. Tervonen and R. Lahdelma. Implementing stochastic multicriteria acceptability analysis.

European Journal of Operational Research, 178(2):500 – 513, 2007.

[44] T. Tervonen, G. Van Valkenhoef, N. Bastürk, and D. Postmus. Hit-and-run enables efficient

weight generation for simulation-based multiple criteria decision analysis. European Journal of

Operational Research, 224:552–559, 2013.

[45] P.P. Wakker. Additive representations of preferences: A new foundation of decision analysis,

volume 4. Springer, 1989.

27



Appendix

Table 10: Rank acceptability indices sampling simultaneously compatible capacities and scales

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k

a1 0 0.08 0.1 1.61 5.03 18.28 32.05 26.28 4.07 12.5

a2 0 0.02 1.9 4.12 4.99 14.82 45.23 26.46 2.46 0

a3 0 0 0 0.57 0.71 1.02 2.98 15.04 52.03 27.65

a4 55.51 32.37 7.54 3.45 0.99 0.1 0.04 0 0 0

a5 4.45 2.78 18.38 12.17 23.54 36.88 1.14 0.47 0.19 0

a6 0 0 0 0.05 0.41 0.89 1.91 10.46 33.24 53.04

a7 26.15 53.89 11.96 5.46 2.29 0.19 0.06 0 0 0

a8 4.79 4 20.66 35.32 23.96 6.21 2.88 1.27 0.81 0.1

a9 5.9 1.72 8.38 9.51 20.36 15.11 9.08 17.92 5.83 6.19

a10 3.2 5.14 31.08 27.74 17.72 6.5 4.63 2.1 1.37 0.52

Table 11: Möbius representations of central capacities sampling simultaneously compatible capacities

and scales

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a4 0.06 0.09 0.09 0.17 0.00 0.01 0.48 -0.05 0.08 0.06

a5 0.09 0.17 0.17 0.16 0.00 0.01 0.38 -0.09 0.02 0.09

a7 0.06 0.10 0.10 0.18 0.00 0.01 0.48 -0.05 0.05 0.07

a8 0.06 0.10 0.10 0.17 0.00 0.02 0.41 -0.05 0.11 0.09

a9 0.05 0.04 0.04 0.28 0.00 0.03 0.34 -0.02 0.17 0.05

a10 0.04 0.07 0.07 0.17 0.00 0.01 0.46 -0.04 0.14 0.08
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Table 12: Pairwise winning indices considering a simulation sampling of random capacities and

common scales

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0 44.25 82.51 0.27 0 85.29 0.32 5.45 34.33 9.63

a2 55.75 0 100 0.07 4.04 97.45 0.09 9.72 35.01 11.35

a3 17.49 0 0 0 1.37 65.79 0 2.81 11.38 3.26

a4 99.73 99.93 100 0 93.99 100 67.71 91.54 93.13 91.47

a5 100 95.96 98.63 6.01 0 99.45 7.36 34.36 58.28 33.69

a6 14.71 2.55 34.21 0 0.55 0 0 1.94 9.26 2.58

a7 99.68 99.91 100 32.29 92.64 100 0 89.46 91.59 89.77

a8 94.55 90.28 97.19 8.46 65.64 98.06 10.54 0 75.23 48.33

a9 65.67 64.99 88.62 6.87 41.72 90.74 8.41 24.77 0 21.94

a10 90.37 88.65 96.74 8.53 66.31 97.42 10.23 51.67 78.06 0

Table 13: Rank acceptability indices taking into account evaluations of alternatives on considered

criteria expressed on the most discriminating common scale shown in Table 9

Alt b1k b2k b3k b4k b5k b6k b7k b8k b9k b10k

a1 0 17.76 8.48 22 10.92 15.65 12.82 9.17 2.42 0.78

a2 0 2.23 5.39 19.02 12.61 7.36 12.66 39.6 1.13 0

a3 0 0 0.33 1.53 2.79 3.18 2.93 7.79 69.46 11.99

a4 32.28 41.1 14.26 6.91 3.2 2 0.25 0 0 0

a5 65.88 12.06 20.58 1.24 0.24 0 0 0 0 0

a6 0 0 0 0 0 0.01 0.73 2.05 14.97 82.24

a7 0.81 21.11 39 15.1 8.06 5.53 5.91 2.38 2.1 0

a8 0 0.35 4.3 5.79 21.08 28.94 29.92 8.89 0.73 0

a9 1.03 2.4 5.23 7.01 15.7 9.83 18.64 26.38 8.79 4.99

a10 0 2.99 2.43 21.4 25.4 27.5 16.14 3.74 0.4 0

Table 14: Möbius representation of the central capacities, taking into account evaluations of alter-

natives on considered criteria expressed on the most discriminating common scale, shown in Table

9

Alt/Möbius m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

a4 0.21 0.18 0.15 0.31 -0.01 0.02 0.17 -0.06 -0.03 0.08

a5 0.15 0.16 0.16 0.18 0.04 0.03 0.14 -0.06 0.07 0.12

a7 0.03 0.26 0.16 0.30 -0.01 0.07 0.38 -0.11 -0.13 0.04

a9 0.24 0.15 0.16 0.46 -0.03 0.03 -0.11 -0.07 0.11 0.07
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Table 15: Möbius representation of the barycenter of capacities taking into account evaluations of

alternatives on the considered criteria expressed on the most discriminant common scale shown in

Table 9

m({1}) m({2}) m({3}) m({4}) m({1, 2}) m({1, 3}) m({1, 4}) m({2, 3}) m({2, 4}) m({3, 4})

0.17 0.17 0.16 0.23 0.02 0.03 0.15 -0.06 0.04 0.10

Table 16: Pairwise winning indices taking into account evaluations of alternatives on the most

discriminant common scale shown in Table 9

Alt/Alt a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0 64.01 92.08 20.67 0 97.97 31.4 71.33 77.54 54.86

a2 35.99 0 100 4.12 0 98.87 11.73 44.58 50.08 35.12

a3 7.92 0 0 0.82 0 87.97 3.86 8.43 16.46 6.53

a4 79.33 95.88 99.18 0 33.34 100 97.25 92.89 93.26 94.22

a5 100 100 100 66.66 0 100 78.61 100 97.19 99.64

a6 2.03 1.13 12.03 0 0 0 0 0.74 5.36 0.01

a7 68.6 88.27 96.14 2.75 21.39 100 0 83.14 82.55 83.94

a8 28.67 55.42 91.57 7.11 0 99.26 16.86 0 64.53 33.65

a9 22.46 49.92 83.54 6.74 2.81 94.64 17.45 35.47 0 29.4

a10 45.14 64.88 93.47 5.78 0.36 99.99 16.06 66.35 70.6 0
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