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Abstract: PROMETHEE methods are widely used in Multiple Criteria Decision Aiding (MCDA)

to deal with real world decision making problems. In this paper, we propose to apply the Stochas-

tic Multicriteria Acceptability Analysis (SMAA) to the family of PROMETHEE methods in order

to explore the whole set of parameters compatible with some preference information provided

by the Decision Maker (DM). The application of the presented methodology is described in a

didactic example.
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1 Introduction

PROMETHEE is a well-known family of Multiple Criteria Decision Aiding (MCDA) methods (see Figueira

et al. 2005a for a collection of surveys on MCDA and Brans and Mareschal 2005, Brans et al. 1984 for a

survey on PROMETHEE methods) that deals with several types of real world problems (Behzadian et al.,

2010).

In order to apply these methods, the Decision Maker (DM) has to provide some preference information

on the parameters involved (preference function shape, weights of criteria and thresholds). This type of

preference information can be given directly or indirectly. The DM gives direct preference information when

she provides directly all values of the parameters present in the model. The DM supplies indirect preference

information when she provides some preferences between alternatives from which compatible preference

parameters can be inferred. The indirect preference information requires less cognitive effort from the DM

and, for this reason, it is widely used in outranking methods (see for example Dias and Mousseau 2006;

Greco et al. 2011; Kadziński et al. 2012; Mousseau and S lowiński 1998; Mousseau et al. 2000).

Recommendations provided by PROMETHEE methods are dependent on the values given to the con-

sidered parameters; in fact, generally, different sets of parameters lead to different comparisons between the

∗Department of Economics and Business, University of Catania, Corso Italia 55, 95129 Catania, Italy, e-mails:
salvatore.corrente@unict.it, salgreco@unict.it
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alternatives. For this reason, many methods have been proposed in literature to elicit sets of parameters

compatible with some preference information provided by the DM or to get values of the parameters leading

to an alternative to occupy the first position(s) in the ranking. Only some of these contributions are cited

in the following.

Taking into consideration an MCDA additive method, and therefore obtaining a ranking of the considered

alternatives, Mareschal (1988) carries out a sensitivity analysis in order to obtain stability intervals for the

criteria weights so that the method provides the same ranking for any combination of the weights inside the

said intervals. Sun and Han (2010) solve a linear programming problem to find the most discriminant set

of weights compatible with the preference information provided by the DM. Wolters and Mareschal (1995)

propose a method to study how the ranking of the alternatives is sensitive to the changes on the weights

and to the evaluations of the alternatives, and which modifications on the importance weights are necessary

to make a certain alternative the best one. Eppe and De Smet (2012) study the weights that best represent

the preferences of the DM and the type of structural information which gives the ranking closest to the

ranking provided by the DM. Eppe et al. (2011) use a meta-heuristic in order to induce parameters for the

PROMETHEE II model starting from some preference information provided by the DM.

If the DM decides to give indirect preferences, Robust Ordinal Regression (ROR) (Greco et al. 2008;

see also Greco et al. 2010 for a survey on ROR) can be applied to explore the whole space of parameters

compatible with the preference information provided by the DM. ROR is a family of MCDA methods

that simultaneously takes into account all sets of parameters compatible with some preference information

provided by the DM considering two preference relations, one possible and one necessary. The necessary

preference relation holds between two alternatives x, y if x is at least as good as y for all sets of parameters

compatible with the information provided by the DM, while the possible preference relation between two

alternatives holds if x is at least as good as y for at least one set of parameters compatible with the

preference information provided by the DM. ROR for preferences with interacting criteria modeled through

the Choquet integral has been considered in Angilella et al. (2010). ROR has also been applied to the

classical PROMETHEE methods in Kadziński et al. (2012) and to the bipolar PROMETHEE methods in

Corrente et al. (2014). An axiomatic basis for the concepts of necessary and possible preferences has been

given in Giarlotta and Greco (2013).

Similarly to ROR, the Stochastic Multiobjective Acceptability Analysis (SMAA) (Lahdelma et al., 1998;

Lahdelma and Salminen, 2001) explores the whole set of parameters compatible with some preference in-

formation provided by the DM. SMAA is a family of MCDA methods that takes into account imprecision

or lack of data considering probability distributions on the space of criteria weights and on the space of

alternatives’ evaluations. SMAA has also been applied to dependent uncertainties (Lahdelma and Salminen,
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2002b; Lahdelma et al., 2006) and to preference with interacting criteria (Angilella et al., 2012).

Proposed in this paper is an integrated approach between SMAA and the classical PROMETHEE meth-

ods creating the SMAA-PROMETHEE method. On one hand, integrating SMAA and PROMETHEE I

method permits computing the frequency of the preference, indifference or incomparability between two

alternatives. On the other hand, integrating SMAA and PROMETHEE II method permits to study the

different positions an alternative can obtain in the ranking when varying the parameters of the model.

The paper is organized as follows. In the next section the classical PROMETHEE I and II methods are

described; in section 3 a description of the SMAA methods introducing their basic concepts is provided; in

section 4 the SMAA-PROMETHEE methods and their link with the ROR are presented. Section 5 contains

a didactic example and finally some conclusions and future directions of research are presented in the last

section.

2 The classical PROMETHEE methods

Consider a set of actions or alternatives A evaluated with respect to a set of criteria G = {g1, . . . , gn}, where

gj : A → R, j ∈ J = {1, . . . , n} and |A| = m. PROMETHEE (Brans and Mareschal, 2005; Brans and

Vincke, 1985) is a well-known family of MCDA methods that aggregate preference information of a DM

through a valued preference relation.

For each criterion gj , PROMETHEE methods build a function Pj(x, y) representing the degree of pref-

erence of x over y on criterion gj and being a non-decreasing function of dj(x, y) = gj(x)− gj(y). The shape

of the function for each criterion should be chosen by the analyst in accordance with the DM’s preference

information. In Brans and Mareschal (2005), six different functions are provided in order to model the

preferences of the DM. In the following, we will consider the most used of them, that is, the piecewise linear

function:

Pj(x, y) =























0 if dj(x, y) ≤ qj ,

dj(x,y)−qj
pj−qj

if qj < dj(x, y) < pj ,

1 if dj(x, y) ≥ pj .

(1)

Notice that the previous function is also known as V -Shape criterion in Brans and Mareschal (2005).

Considering for each criterion gj a weight wj (representing the importance of criterion gj within the

family of criteria G, such that wj ≥ 0 for all j and
∑

j∈J wj = 1), an indifference threshold qj (being the

largest difference dj(x, y) compatible with the indifference between alternatives x and y on criterion gj), and

a preference threshold pj (being the minimum difference dj(x, y) compatible with the preference of x over y
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on criterion gj), for each ordered pair of alternatives (x, y) ∈ A×A, PROMETHEE methods compute

π(x, y) =
∑

j∈J

wjPj(x, y)

representing how much alternative x is preferred to alternative y taking into account the whole set of criteria.

π(x, y) can assume values between 0 and 1 and obviously the greater the value of π(x, y), the greater the

preference of x over y.

In order to compare an alternative x with all the other alternatives of the set A, PROMETHEE methods

consider the negative and the positive flow of x defined in the following way:

φ−(x) =
1

m− 1

∑

z∈A\{x}

π(z, x) and φ+(x) =
1

m− 1

∑

z∈A\{x}

π(x, z).

φ−(x) represents how much the alternatives from A \ {x} are preferred to x; the smaller φ−(x) the better

alternative x is; φ+(x) represents how much x is preferred to the alternatives from A\{x}; the greater φ+(x),

the better x is. PROMETHEE II also computes the net flow φ(x) = φ+(x) − φ−(x) for each alternative

x ∈ A. Taking into account the negative and the positive flows, PROMETHEE I builds a preference (PI),

an indifference (II) and an incomparability (RI) relation on the set of alternatives A while, considering

the net flow, PROMETHEE II builds a preference (PII) and an indifference (III) relation on the set of

alternatives A:































xPIy iff Φ+(x) ≥ Φ+(y), Φ−(x) ≤ Φ−(y) and at least one of the two inequalities is strict,

xIIy iff Φ+(x) = Φ+(y) and Φ−(x) = Φ−(y),

xRIy otherwise.











aPIIb iff Φ(a) > Φ(b),

aIIIb iff Φ(a) = Φ(b).

Let us notice that PI ∪ II in PROMETHEE I and PII ∪ III in PROMETHEE II provide a partial and a

complete preorder on the set of alternatives A, respectively.

3 SMAA

By choosing the decision model and by assigning the values of its parameters, it is straightforward obtaining

some results for building further recommendations regarding the problem at hand. Generally, the DM is
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unable to directly provide these parameters or she is unaware of their meaning. Moreover, the evaluations

of the considered alternatives can be missing or imprecise in real world decision making problems.

SMAA is a family of MCDA methods that takes into account imprecision or lack of data in the problem at

hand considering a probability distribution fW over the space of all compatible weights W and a probability

distribution fχ over the space χ ⊆ R
m×n of the alternatives’ evaluations gj(a) with j ∈ J and a ∈ A (see

Lahdelma et al. 1998, 2003; Lahdelma and Salminen 2001 for the first papers on SMAA, Tervonen and

Figueira 2008 for a comprehensive survey on the use of SMAA methods in MCDA and Aertens et al. 2011;

Durbach 2009; Lahdelma and Salminen 2009; Menou et al. 2010; Tervonen et al. 2009a,c for some recent

publications on SMAA).

Now let us describe some SMAA concepts considering the additive value function, u(xi, w) =
∑

j∈J

wjgj(xi)

with xi ∈ A and w ∈ W , as preference model.

Without any preference information provided by the DM, the weight space is defined as follows:







w ∈ R
n : wj ≥ 0, ∀j ∈ J , and

∑

j∈J

wj = 1







.

If the DM is able to provide some preference information, then the space W is restricted by the constraints

translating this preference information. Consequently, with W we shall denote the set of weights compatible

with the preference information provided by the DM.

Because u(xi, w) provides a complete ranking of the alternatives, for each ξ in χ and w in W , SMAA

computes the position reached by alternative xi ∈ A as

rank(i, ξ, w) = 1 +
∑

k 6=i

ρ(u(ξk, w) > u(ξi, w)),

where ρ(true) = 1 and ρ(false) = 0. Besides, for each ξ ∈ χ, SMAA defines the favourable rank weights of

alternative xi ∈ A

W r
i (ξ) = {w ∈ W : rank(i, ξ, w) = r}

being the set of possible weights giving to alternative xi the position r = 1, . . . ,m in the final rank.

On the basis of the favourable rank weights, SMAA computes the rank acceptability indices, the central

weight vectors and the pairwise winning indices.

• The rank acceptability index
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bri =

∫

ξ∈χ
fχ(ξ)

∫

w∈W r
i (ξ)

fW (w) dwdξ

describes the share of parameters giving to alternative xi the position r in the obtained final ranking; in

particular, b1i measures the variety of parameters making alternative xi the most preferred. Obviously,

the best alternatives are those that have a rank acceptability index greater than zero for the first

positions and rank acceptability index close to zero for the lower positions.

• The central weight vector

wc
i =

1

b1i

∫

ξ∈χ
fχ(ξ)

∫

w∈W 1

i (ξ)
fW (w)w dwdξ

describes the preferences of a typical DM that makes alternative xi the most preferred.

• The pairwise winning index (Tervonen et al. 2009b and Leskinen et al. 2006)

pik =

∫

w∈W :rank(i,ξ,w)>rank(k,ξ,w)
fW (w)

∫

ξ∈χ
fχ(ξ) dξdw

is the probability for an alternative xi being more preferred than xk.

4 SMAA-PROMETHEE

As stated in Section 2, the use of the PROMETHEE methods is based on preference function shape, weights

of criteria, indifference and preference thresholds and evaluations of the alternatives on the considered

criteria. Obviously, the choice of each of these parameters will influence the results obtained by applying

the PROMETHEE methods. In order to take into account the variety of possible results that can be obtained

using different values of parameters compatible with the preference information provided by the DM, we

shall apply the SMAA methodology. Even if SMAA has already been applied to outranking methods and

in particular to ELECTRE methods (Hokkanen et al., 1998; Tervonen et al., 2009a), to the best of our

knowledge, applying SMAA to PROMETHEE methods has never been attempted in literature before.

In this section, how to translate different types of preference information provided by the DM and how

to obtain results by using the SMAA methododology will be described.
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4.1 The DM gives information on importance of criteria.

The DM could be able to give different types of information regarding the importance of criteria. She could

order all the criteria with respect to their importance or she could provide an interval of possible values for

the same criteria stating, for example, that the importance of criterion g1 is between 0.2 and 0.4 or that the

importance of criterion g3 is between 0.3 and 0.5 and so on.

This preference information can be easily translated by linear inequalities. In the first case, considering

n criteria g1, g2, . . . , gn ordered from the highest to the least important, the corresponding linear inequalities

are w1 ≥ w2 ≥ . . . ≥ wn while in the second case, interval preferences are translated by 0.2 ≤ w1 ≤ 0.4 and

0.3 ≤ w3 ≤ 0.5.

As stated in the previous section, without any preference information provided by the DM, the weight

space is defined by
{

w ∈ R
n : wj ≥ 0, ∀j ∈ J , and

∑

j∈J wj = 1
}

. All the inequalities translating the pref-

erence information provided by the DM on the importance of criteria, reduce the weight space defining a

polyhedron W . Observe that W is a convex set whose points can be obtained as a convex combination of

its vertices, v1, . . . , vk. Many papers have provided ways to find such vertices (see for example Solymosi and

Dombi 1986; Carrizosa and Conde 1995; Mármol et al. 1998; Puerto et al. 2000). In the easiest case, let us

consider n criteria rearranged in a non-increasing order of importance, i.e. g1 is at least as important as g2

which, in turn, is at least as important as g3, and so on. For the Paelinck’s theorem (Paelinck, 1974), whose

proof is given in Claessens et al. (1991), the vertices of the polyhedron defined by this information are the

columns of the following matrix:

M =

























1 1
2

1
3 · · · 1

n

0 1
2

1
3 · · · 1

n

0 0 1
3 · · · 1

n

· · · · · · · · · · · · · · ·

0 0 0 0 1
n

























For example, if the DM provides this complete order of criteria g2, g4, g1, g3, (i.e. we should have w2 ≥ w4 ≥

w1 ≥ w3) the vertices of the corresponding polyhedron are v1 = (0, 1, 0, 0), v2 =
(

0, 12 , 0,
1
2

)

, v3 =
(

1
3 ,

1
3 , 0,

1
3

)

,

and v4 =
(

1
4 ,

1
4 ,

1
4 ,

1
4

)

.

In this particular case, as the set of weights is convex, a convex combination of said vertices could be

used by the analyst to easily get other weights compatible with the preferences provided by the DM.

In order to get robust recommendations for the considered problem, the whole set of compatible weights

should be explored and, for this reason, we can apply SMAA and ROR (Greco et al., 2008). ROR is a family
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of MCDA methods that simultaneously take into account all the sets of parameters compatible with the

preference information provided by the DM building a necessary and a possible preference relation. Given

two alternatives x and y, we say that x is necessarily preferred to y, and we write x %N y, if x is at least as

good as y for all compatible sets of parameters, while x is possibly preferred to y, and we write x %P y, if

x is at least as good as y for at least one compatible set of parameters. ROR has already been applied to

classical PROMETHEE methods in Kadziński et al. (2012).

Inspired by Corrente et al. (2013), supposing that the weights are the only variables in our model (there-

fore alternatives’ evaluations and thresholds are considered as data of the decision problem), we get the

following results on ROR applied to PROMETHEE methods:

Theorem 4.1. Given two alternatives x and y, the polyhedron W of weights compatible with the preferences

provided by the DM whose vertices are v1, . . . , vk, and denoting by Mv1 , . . . ,Mvk the PROMETHEE models

obtained by considering the vectors of weights v1, . . . , vk, respectively, we have for all x, y ∈ A:

1. x is necessarily preferred to y iff x is at least as good as y for all models Mv1 , . . . ,Mvk (for both

PROMETHEE I and II),

2. x is possibly preferred to y iff x is at least as good as y for at least one model among Mv1 , . . . ,Mvk

(only for PROMETHEE II).

Proof.

1. It is obvious that if x is necessarily preferred over y, then x is at least as good as y for all models

Mv1 , . . . ,Mvk .

Now, let Mv the PROMETHEE model obtained by considering a generic compatible weight vector v.

Because each weight vector v is a convex combination of the weight vectors vj , then there exists λj

such that v = λ1v1 + . . . + λkvk, where vj = (wj
1, . . . , w

j
n) and v = (wv

1 , . . . , w
v
n). Remembering that

πv(x, y) =

n
∑

l=1

wv
l Pl(x, y), wv

l =

k
∑

j=1

λjw
j
l and πj(x, y) =

n
∑

l=1

w
j
l Pl(x, y) for all j = 1, . . . , k,

then πv(x, y) =
n
∑

l=1





k
∑

j=1

λjw
l
j



Pl(x, y) and therefore πv(x, y) =
k

∑

j=1

λjπ
j(x, y). We can observe that:

• Φ+
v (x) =

1

m− 1

∑

z∈A\{x}

πv(x, z) =
1

m− 1

∑

z∈A\{x}

k
∑

j=1

λjπ
j(x, z) =

k
∑

j=1

λjΦ
+
j (x),
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• Φ−
v (x) =

1

m− 1

∑

z∈A\{x}

πv(z, x) =
1

m− 1

∑

z∈A\{x}

k
∑

j=1

λjπ
j(z, x) =

k
∑

j=1

λjΦ
−
j (x),

• Φv(x) = Φ+
v (x) − Φ−

v (x) =
k

∑

j=1

λjΦ
+
j (x) −

k
∑

j=1

λjΦ
−
j (x) =

k
∑

j=1

λjΦj(x).

Because x is at least as good as y for the model Mvj if Φj(x) ≥ Φj(y) (or if Φ+
j (x) ≥ Φ+

j (y) and

Φ−
j (x) ≤ Φ−

j (y) using the PROMETHEE I method), it is now straightforward observing that if

Φj(x) ≥ Φj(y) (Φ+
j (x) ≥ Φ+

j (y) and Φ−
j (x) ≤ Φ−

j (y)) for all j = 1, . . . , k then Φv(x) ≥ Φv(y)

(Φ+
v (x) ≥ Φ+

v (y) and Φ−
v (x) ≤ Φ−

v (y)).

2. It is obvious that if x is at least as good as y for at least one among Mv1 , . . . ,Mvk , then x is possibly

preferred to y.

Now, let us suppose that x is possibly preferred to y. This means that at least one compatible model

Mv exists such that Φv(x) ≥ Φv(y). Let us suppose, for contradiction, that x is not at least as good

as y for all models Mv1 , . . . ,Mvk . This means that Φj(x) < Φj(y) for all j = 1, . . . , k. Because v is

obtained by convex combination of v1, . . . , vk, then λ1, . . . , λk exist so that v = λ1v1 + . . .+λkvk, and,

as proved previously, Φv(x) =
∑k

j=1 Φj(x) for all x ∈ A. Since Φj(x) < Φj(y) for all j = 1, . . . , k then

Φv(a) < Φv(b) obtaining in this way a contradiction.

We underline that the results obtained by SMAA and ROR are closely linked for the following two

reasons: given xi, xk ∈ A,

• if xi is necessarily preferred to xk, then the pairwise winning index pik = 1,

• if pik > 0 then xi is possibly preferred to xk.

Let us observe that the viceversa of the two statements above are not true in general. In fact, even if pik = 1,

other set of parameters not sampled from SMAA for which xk is preferred to xi could exist (and therefore xi

is not necessarily preferred to xk). Analogously, even if xi is possibly preferred to xk, then it is still possible

that for no compatible set of parameters sampled from SMAA xi is preferred to xk and therefore pik = 0.

As SMAA methods compute their indices sampling a large number of sets of parameters among all the

compatible ones while the ROR takes into account all the sets of parameters simultaneously, if the sample

of the sets of parameters is very high, SMAA results can be used to approximate the results of the necessary

and the possible preference relations of the ROR analysis (see Kadziński and Tervonen, 2013a,b for two

papers studying the relationships between SMAA and ROR).
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4.2 The DM gives preference information on thresholds.

Let us suppose that the analyst, in accordance with the DM, has decided that the V-Shape function (1) is

the most appropriate to model her preferences on all criteria. The DM may be interested in giving some

preference information on the indifference and preference thresholds for some criterion gj , j ∈ J in the

form of interval values. That is, she could state that the indifference threshold is a value between h and

k or that the preference threshold is lower than a certain value l. In this case, indifference and preference

thresholds compatible with the preference information provided by the DM should satisfy the following set

of constraints






qj,∗ ≤ qj ≤ q∗j , for all j ∈ J ,

pj,∗ ≤ pj ≤ p∗j , for all j ∈ J ,
(2)

where qj,∗, and q∗j , on one side and pj,∗ and p∗j on the other side are the bounds of the indifference and

preference thresholds respectively. Even if, in general, the DM could provide some preferences on the

thresholds such that q∗j is greater than pj,∗, for the sake of simplicity we shall suppose that q∗j ≤ pj,∗. In the

extreme case, in which the DM does not give any information on these bounds, then qj,∗ = 0, q∗j = pj,∗ = pj

and p∗j = mj = max
x,y∈A

|gj(x) − gj(y)| and therefore the inequalities in (2) become 0 ≤ qj ≤ pj ≤ mj .

In this case, since the set of constraints (2) defines a convex space, in order to sample other vector of

thresholds compatible with the preferences of the DM, one can apply the Hit-And-Run method (Smith, 1984;

Tervonen et al., 2013). The Hit-And-Run sampling begins with the choice of one point inside the polyhedron

delimited by the constraints translating the preference information provided by the DM. At each iteration,

a random direction is sampled from the unit hypersphere that, with the considered position, generates a

line. Finally, the sampling of one point inside the segment whose extremes are the intersection of the line

with the bounds and the current point is done. Let us point out that the Hit-And-Run sampling method

could also be applied in the case in which the DM provides preference information on the importance of

criteria because the constraints translating the partial or total order of the importance weights constitute a

convex set in the feasible weights space.

4.3 The evaluations of the alternatives are given imprecisely

In some decision making problems, evaluations of alternatives are given in an imprecise way. This means that

the evaluation of a certain alternative on a particular criterion is not punctual but it could be any value inside

an interval. For example, evaluating sport cars, the price of a car could vary between 15000 and 17500 Euros

while its maximum speed could vary between 200 km/h and 230 km/h. In this case, for each alternative

x ∈ A, one can define its evaluation space as G(x) =
∏

j∈J

[αj(x), βj(x)] where gj(x) ∈ [αj(x), βj(x)] for all
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j ∈ J and in particular αj(x) = βj(x) if the evaluation of x on criterion gj is given precisely. In this way,

the comprehensive evaluation space will be G =
∏

x∈A

G(x).

In order to take into account such type of preference, before applying the PROMETHEE methods, one

should sample a performance table from G and then compute the total or partial ranking of the alternatives.

4.4 The DM is able to provide some preference information on the considered alter-

natives

In order to get the parameters necessary to apply the methodology, a direct and an indirect techniques

have been referred to throughout literature. The DM gives direct preference information when she directly

provides all values of the parameters present in the model. The DM supplies indirect preference information

when she provides some preferences between alternatives from which compatible preference parameters can

be inferred.

Supposing to consider the indirect preference information, the DM could state, for example, that alter-

native x is preferred to alternative y or that x and y are indifferent. Such preference information can be

translated by the following inequalities:

• π(x, y) > π(y, x) (π(x, y) = π(y, x)) if x is locally preferred (indifferent) to y,

• Φ(x) > Φ(y) (Φ(x) = Φ(y)) if x is comprehensively preferred (indifferent) to y and PROMETHEE II

is considered,

• Φ+(x) ≥ Φ+(y), Φ−(x) ≤ Φ−(y) and Φ(x) > Φ(y) if x is comprehensively preferred to y and

PROMETHEE I is considered,

• Φ+(x) = Φ+(y), and Φ−(x) = Φ−(y), if x is comprehensively indifferent to y and PROMETHEE I is

considered.

All of the previous constraints are obviously dependent on the weights of criteria, on the indifference and

preference thresholds and also on the evaluations of the alternatives. We have to distinguish two cases:

• The evaluations of the alternatives on the considered criteria and the indifference and preference

thresholds are punctually defined. In this case, the only variables are the weights of criteria on

which eventually the DM could provide some preference information. Therefore, considering the set of

constraints translating the preferences of the DM on the weights, one can sample weights compatible

with these preferences by using one of the methods introduced in section 4.1.
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• The evaluations of the alternatives are not fixed or the DM wishes to provide some preference informa-

tion on the thresholds. In this case, the set of constraints modelling the preferences of the DM on the

considered alternatives depends on the evaluations of the alternatives and, the problem of sampling

a performance table compatible with these preferences is highly not linear. For this reason, one can

proceed by sampling a performance table from the evaluation space G and, independently from the

performance table sampled, a set of weights and thresholds compatible with the preference information

provided by the DM proceeding as described in sections 4.1 and 4.2. Two cases can arise:

– if the sampled parameters (evaluations of the alternatives and thresholds) are compatible with

the preferences provided by the DM on the considered alternatives, then these parameters are

stored,

– if the sampled parameters are not compatible with the preferences provided by the DM on the

considered alternatives, then they are rejected and, if the maximum number of sampling has not

yet been reached, a new sampling is performed.

For each sampled set of parameters compatible with the preferences of the DM, one can get:

• preference P I , indifference II and incomparability RI relations by the PROMETHEE I method,

• preference P II and indifference III relations by the PROMETHEE II method,

• ranking of the alternatives by the PROMETHEE II method.

After performing a certain number of iterations, in case of PROMETHEE II one can compute the rank

acceptability indices bri (introduced in section 3), the preference matrix P and the indifference matrix I. In

particular, the elements in the position (i, j) of the matrices P and I are the global pairwise winning index

of alternative xi over xj and the frequency of the indifference between xi and xj respectively. Besides, one

can compute the central weight vector wc
i and the center of mass wc representing respectively the typical

preferences allowing to alternative xi to get the first rank and the average preferences of the DM.

Considering instead the PROMETHEE I method, for each pair of alternatives (xi, xj) ∈ A×A one can

compute the global pairwise winning index pij , and the frequency of the indifference or incomparability

between xi and xj .

As stated previously, PROMETHEE I does not provide a complete ranking of the alternatives but only

a partial one. For this reason, we suggest to compute two matrices UP and DOWN of dimension nxn which

elements have the following interpretation:
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• UP(i, k) is the frequency with which alternative xi is preferred to k other alternatives in A by using

the PROMETHEE I method. For example, if UP(i, 0) = 50% then one can state that in the 50%

of the simulations, alternative xi is not preferred to any other alternative in A. Analogously, if

UP(i, n− 1) = 100%, then in all cases alternative xi is preferred to all other alternatives in A by using

the PROMETHEE I method.

Consequently, it can be observed that the best alternatives are those one having high frequency for

k = ⌊n2 ⌋, ..., n− 1 (the symbol ⌊α⌋ denotes the minimum integer contained in α).

• DOWN(i, k) represents the frequency with which k other alternatives in A are preferred to alternative

xi by using the PROMETHEE I method. For example, if DOWN(i, 0) = 30% then it can be stated that

in 30% of the simulations, no alternative is preferred to xi. Analogously, if DOWN(i, n− 1) = 100%,

then in all cases all alternatives are preferred to xi by using the PROMETHEE I method.

Differently from the previous case, it can be observed that the best alternatives are those which have

a high frequency for k = 0, ..., ⌊n2 ⌋.

Observe that the two matrices UP and DOWN can be computed in any MCDA method providing a

partial preorder on the set of alternatives A as, for example, ELECTRE II, III and IV (see Figueira et al.,

2005b).

Let us also observe that the two matrices UP and DOWN could be computed for the PROMETHEE

II method and for each other method providing a complete order of the alternatives in A observing what

follows:

• for each (i, k) we will have UP(i, k)+DOWN(i, n− 1− k) = 100% because if xi is preferred to k other

alternatives, then n−1−k other alternatives are preferred to xi. We said ”‘generally”’ because in some

particular cases xi could be indifferent to other alternatives xj and therefore neither xi is preferred to

xk nor xk is preferred to xi,

• for each xk ∈ A and r = 1, . . . , n, brk=UP(k, n − r) and brk =DOWN(k, r − 1). In fact, if xk is in

position r with a certain frequency, then with the same frequency xk is preferred to n− r alternatives

and, r − 1 alternatives are preferred to xk.

The global pairwise winning index pij is computed comparing xi and xj but taking into account all the

alternatives in the set A. In order to compare alternatives xi and xj without taking into account all

the other alternatives, one can compute the local pairwise winning index being the frequency with which

π(xi, xj) > π(xj , xi) that is the frequency with which xi is preferred to xj more than xj is preferred to xi.
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5 Illustrative example

In this section we shall apply SMAA to the classical PROMETHEE methods to deal with a multiple criteria

decision making problem in which a DM has to choose among five cars evaluated on four different criteria:

Price, Acceleration, Maximum speed and Consumption. The evaluations of the five cars on the four criteria

are reported in Table 1.

Table 1: Performance Table

Cars Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

(PE) PEUGEOT 208 1.6 8V [16000, 18000] [9.5, 11.5] [175, 190] [2.8, 4.5]
e-HDi 92 CV Stop&Start 3p. Allure

(CI) CITROEN C3 [15000, 16500] [12.7, 14.2] [155, 170] [3, 4.6]
1.4 HDi 70 Seduction

(FI) FIAT 500 0.9 [14500, 15800] [10, 12] [165, 180] [3, 5]
TwinAir Turbo Street

(SK) SKODA Fabia 1.2 [14100, 15650] [13.2, 15.2] [160, 181] [2.5, 4.3]
TDI CR 75 CV 5p. GreenLine

(LA) LANCIA Ypsilon 5p [15500, 17100] [10.6, 12.8] [175, 191] [3.2, 4.4]
1.3 MJT 95 CV 5p. S&S Gold

Let us suppose that the DM in accordance with the analyst decides that the V-shape function represents

her preferences and she arranges the criteria in a non-increasing order of preference as follows: Price,

Consumption, Acceleration and Maximum speed. This means that, denoting with wP , wA, wM and wC the

weights of the four criteria, the DM preferences are translated by the constraints wP ≥ wC ≥ wA ≥ wM .

Regarding the indifference and the preference thresholds, the DM gives the information reported in Table

2.

Table 2: Indifference and preference thresholds

Thresholds Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

qj [500, 1000] [2, 3] 30 [0, 0.5]

pj [1500, 2000] [3, 5] 40 0.5

Since the DM is interested in getting a general overview of the five cars, we present her with the results

in Tables 3 and 4 achieved by applying SMAA to the classical PROMETHEE I and II methods.

According to Tervonen and Lahdelma (2007), in order to achieve error limits of 0.01 for bri , we sampled

10000 sets of parameters compatible with the preference information provided by the DM. The results show

that (SK) is almost surely the best car. Indeed, looking at the positive and the negative flows separately,

that is taking into account how much an alternative is preferred to all other alternatives and how much all
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other alternatives are preferred to it, we obtain:

• (SK) is preferred to each other car with a frequency of at least 77% (see the fourth row of Table 3(a)),

• (SK) is preferred to all other cars with a frequency of 66% (see the fourth row of Table 3(b)),

• the frequency that none of the other alternatives is preferred to (SK) is 83% (see the fourth row of

Table 3(c)).

In the same way, (PE) should be the worst car because:

• Each car is preferred to (PE) with a frequency of at least 49% (see the first column of Table 3(a)),

• (PE) is preferred to no other car with a frequency of 71% (see the first row of Table 3(b)).

• All other cars are preferred to (PE) with a frequency of 44% (see the first row of Table 3(c)),

Looking at the second best car, it seems that the choice should be between CI and FI because both of them

are more globally preferred to SK (see fourth column of Table 3(a)) and more locally preferred to SK (see

fourth column of Table 3(d)).

Table 3: Results obtained by applying SMAA to the classical PROMETHEE I method

(a) Global pairwise winning indices (in
percentage)

PE CI FI SK LA

PE 0 9 9 1 22
CI 70 0 38 9 65
FI 75 43 0 9 64
SK 94 78 77 0 92
LA 49 21 19 3 0

(b) UP(i, k): frequency with which al-
ternative xi is preferred to k other al-
ternatives (in percentage)

UP 0 1 2 3 4

PE 71 19 7 2 0
CI 14 25 32 23 6
FI 14 23 27 29 7
SK 1 4 10 19 66
LA 37 38 17 7 1

(c) DOWN(i, k): frequency with which
k alternatives are preferred to alterna-
tive xi (in percentage)

DOWN 0 1 2 3 4

PE 3 12 18 24 44
CI 14 37 30 14 4
FI 18 41 24 13 4
SK 83 13 4 1 0
LA 4 17 27 36 16

(d) Local pairwise winning index (in
percentage)

PE CI FI SK LA

PE 0 19 12 2 33
CI 79 0 49 13 56
FI 86 44 0 13 66
SK 98 77 84 0 92
LA 54 30 27 6 0

Because the DM wants to be as cautious as possible in choosing the best car, she would like to have

more information about the possible rankings that can be obtained varying the different parameters and

about which preferences make each alternative the best. For this reason, we decided to show her the results
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obtained by applying SMAA to the classical PROMETHEE II method too. We point out that looking at

the first two columns of Table 4(a), that is at the frequency by which a car reached the first two positions,

(FI) is slightly better than (CI) while it is still confirmed that PE is the worst car.

Table 4: Results obtained by applying SMAA to the classical PROMETHEE II method

(a) Rank acceptability indices (in per-
centage)

b1
j b2

j b3
j b4

j b5
j

PE 1 5 12 23 60
CI 9 31 32 20 8
FI 12 36 26 18 8
SK 76 16 6 2 0
LA 2 12 24 38 25

(b) Central weight vectors

Cars wP wA wM wC

PE 0.46 0.14 0.06 0.33
CI 0.49 0.15 0.06 0.29
FI 0.54 0.13 0.05 0.26
SK 0.52 0.14 0.06 0.26
LA 0.49 0.13 0.06 0.30

(c) Center of mass

wP wA wM wC

0.52 0.14 0.06 0.27

From Table 4(a) we see that every car could fill the first position in the final rank while from Table 4(b)

we understand that criterion Maximum speed has a general marginal importance in the final decision. In

particular, it can be surprising to see that (PE) could achieve the first position, and therefore asking for

which values of the parameters it could happen.

Table 5: Average evaluations of the alternatives and of the thresholds for which (PE) gets the first position

Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PE 16294.6 10.57 183.35 3.09

CI 15801.4 13.39 162.85 3.92

FI 15229.3 11.08 172.53 4.15

SK 15244.7 14.09 170.21 3.89

LA 16168.6 11.77 183.87 3.84

qj 772.75 2.52 30 0.22

pj 1778.57 4.02 40 0.5

Looking at Table 5 we can observe that even if (PE) has the highest price among the five considered

cars, and that the price is the most important criterion for the DM, it has the lowest consumption and this

criterion is the second most important and has an importance weight equal to 0.27.
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In Table 6 we reported the evaluations and the thresholds for which the other four alternatives could

reach the first position.

Table 6: Average evaluations and thresholds for which each alternative reached the first position

(a) CITROEN C3

Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PE 17068.2 10.49 182.31 3.65

CI 15500.1 13.50 162.25 3.31

FI 15203.5 10.96 172.53 4.14

SK 15068.4 14.16 170.56 3.89

LA 16319.3 11.67 183.00 3.79

qj 758.80 2.51 30 0.24

pj 1757.99 3.98 40 0.5

(b) FIAT 500 0.9

Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PE 16970.8 10.54 182.44 3.66

CI 15814.4 13.43 162.45 3.85

FI 14956.4 11.08 172.39 3.41

SK 15079.1 14.11 170.29 3.83

LA 16308.6 11.70 182.98 3.78

qj 747.52 2.50 30 0.24

pj 1753.39 4.06 40 0.5

(c) SKODA Fabia 1.2

Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PE 16998.9 10.50 182.51 3.65

CI 15776 13.44 162.50 3.84

FI 15169.6 10.99 172.52 4.07

SK 14816.2 14.21 170.60 3.25

LA 16298.3 11.69 182.98 3.80

qj 747.97 2.50 30 0.25

pj 1747.43 3.98 40 0.5

(d) LANCIA Ypsilon 5p

Price Acceleration Max speed Consumption
Euro 0/100 km/h km/h l/100km

PE 17133.2 10.53 182.09 3.73

CI 15758.9 13.48 162.42 4.00

FI 15257.2 10.97 172.45 4.26

SK 15139.3 14.12 170.71 3.99

LA 15865.3 11.76 183.10 3.41

qj 783.50 2.52 30 0.24

pj 1757.29 4.08 40 0.5

Inspired by Lahdelma and Salminen (2002a), the analyst could be interested in understanding whether

the results provided by the method are dependent on the values assigned to the considered thresholds. For

this reason, we applied SMAA to 2000 randomly generated problems. Each problem was composed as follow.

We sampled a performance table M and a vector of weights w compatible with the preference information

provided by the DM. Then, by considering M and w, we sampled 10000 thresholds in the considered intervals

and we studied, consequently, the rank acceptability indices obtained by applying SMAA.

Table 7: Robustness analysis on indifference and preference thresholds

Number of alternatives having b1j > 0 Problems

1 1501

2 422

3 69

4 8

5 0
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Looking at Table 7, we could state that, fixing the performance table and the weight vector, in same cases

the variation of the thresholds does not influence the results of the model while in all others cases it could

marginally influence the results. On one side, out of 1501 problems, only one alternative had b1k > 0 after

applying SMAA. This means that only one alternative can be ranked first rank whilst also changing the

thresholds. On the other side, in no problem all alternatives can have b1k > 0 whereas out of 8 problems only

four out of the five considered alternatives can fill the first position (having b1k > 0). This means that, in

this example, the variation of the thresholds won’t highly influence the results obtained by applying SMAA

once that the performance table and the criteria weights have already been fixed.

In general, we could not state that the values given to the thresholds are not influencing the results but

that the DM should perform in any case a sensitivity analysis to test the robustness of the obtained results.

6 Conclusions

PROMETHEE methods and SMAA have been widely applied to deal with several real world problems

(Behzadian et al., 2010; Tervonen and Figueira, 2008). In this paper we have proposed to apply SMAA to

the classical PROMETHEE methods (Brans and Mareschal, 2005; Brans et al., 1984). The integration of

SMAA and PROMETHEE methods gives the opportunity to obtain recommendations considering several

set of parameters compatible with the preference information provided by the DM, and not only considering

one of these sets. Thus the methodology presented in this paper brings about the possibility to effectively

deal with robustness concerns related to the choice of preference parameters in PROMETHEE methods.

In the PROMETHEE II case, one can look at the possible final rankings obtained considering the net

flow and at which parameters give to an alternative the best position.

In the didactic example we have shown that the SMAA methodology can be applied to classical PROMETHEE

methods. This brings us to believe that the methodology we are proposing in this paper can be adopted to

deal with many real-world problems.

In the future we also plan on applying the SMAA methodology to the bipolar PROMETHEE methods

(Corrente et al., 2012) being the extension of the classic PROMETHEE methods to the case of interacting

criteria and to the MCHP applied to PROMETHEE methods (Corrente et al., 2013).
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M. Kadziński, S. Greco, and R. S lowiński. Extreme ranking analysis in robust ordinal regression. Omega,

40(4):488–501, 2012.

R. Lahdelma and P. Salminen. SMAA-2: Stochastic multicriteria acceptability analysis for group decision

making. Operations Research, 49(3):444–454, 2001.

R. Lahdelma and P. Salminen. Pseudo-criteria versus linear utility function in stochastic multi-criteria

acceptability analysis. European Journal of Operational Research, 141(2):454–469, 2002a.

R. Lahdelma and P. Salminen. Modelling dependent uncertainties by multivariate gaussian distributions in

smaa. Technical Report 471, 2002b.

R. Lahdelma and P. Salminen. Prospect theory and stochastic acceptability analysis (SMAA). Omega, 37

(5):961–971, 2009.

R. Lahdelma, J. Hokkanen, and P. Salminen. SMAA - Stochastic multiobjective acceptability analysis.

European Journal of Operational Research, 106(1):137–143, 1998.

R. Lahdelma, K. Miettinen, and P. Salminen. Ordinal criteria in stochastic multicriteria acceptability

analysis (SMAA). European Journal of Operational Research, 147(1):117–127, 2003.

R. Lahdelma, S. Makkonen, and P. Salminen. Multivariate Gaussian criteria in SMAA. European Journal

of Operational Research, 170(3):957–970, 2006.

P. Leskinen, J. Viitanen, A. Kangas, and J. Kangas. Alternatives to incorporate uncertainty and risk attitude

in multicriteria evaluation of forest plans. Forest Science, 52(3):304–312, 2006.

B. Mareschal. Weight stability intervals in multicriteria decision aid. European Journal of Operational

Research, 33(1):54–64, 1988.
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